Revealing the effects of powder reuse for selective laser melting by powder characterization

Thumbnail Image
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Springer Nature
Google Scholar
Research Projects
Organizational Units
Journal Issue
In a selective laser melting process, it is common to reuse the powder in consecutive cycles of the route because it is more sustainable and cost effective. However, it is unknown whether reusing the material has an influence on the process. In this paper, Inconel 718, Ti6Al4V, AlSi10Mg and Scalmalloy are characterized to determine the impact of reusing powders on the additive manufacturing (AM) process under an argon high-purity atmosphere. Virgin powders were taken from the suppliers and compared to powders that had been used in the process for a long period of time with periodic ‘rejuvenation’. A well-structured characterization procedure, combining many existing techniques, is proposed, determining changes in the morphology, composition (chemical and microstructure) and flowability. Clear differences between the virgin and used state are revealed by the characterizations; AlSi10Mg, appears to be the most sensitive to reuse with changes in particle size distribution and morphology, and with an increase in the oxygen content. The main contribution of this paper is providing insight into the effects of reuse for four commonly used AM powders, by means of a simple but well-structured method that links the particle feature characterization process to the flowability of metal AM powders. The provided insights enable enhanced decision-making on recycling and reuse of powder for specific AM processes.
Metal powders, Ti-6al-4v
Bibliographic citation
Cordova, L., Campos, M. & Tinga, T. (2019). Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization. JOM, 71(3), 1062–1072.