Publication:
Numerical study of the effect of pressure and temperature on the fluidization of solids with air and (supercritical) CO2

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Tecnologías Apropiadas para el Desarrollo Sosteniblees
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería de Sistemas Energéticoses
dc.contributor.authorHernández Jiménez, Fernando
dc.contributor.authorGarcía Gutiérrez, Luis Miguel
dc.contributor.authorAcosta Iborra, Antonio
dc.contributor.authorSoria Verdugo, Antonio
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-04-29T08:06:33Z
dc.date.available2021-05-01T23:00:06Z
dc.date.issued2019-05
dc.description.abstractThis work performs numerical simulations of fluidized beds under different conditions of pressure and temperature and using air and CO2 as fluidizing agents. The conditions of high temperature and pressure tested turn the CO2 into supercritical conditions, so the differences when the fluidizing agent is at supercritical conditions are also tested. The results show that when pressure and temperature are increased, fluidization with air or CO2 shifts from the typical bubbling fluidization characteristic of ambient conditions, to a more homogeneous fluidization where not only bubbles and dense phase are present in the bed, but also a dilute phase of moderate solids concentration. The main consequence is an increase of the lateral motion of gas and solids at high pressure and temperature. A deviation from the classical Two-phase theory occurs because the gas velocity through the dense phase at high pressure and temperature is higher than the corresponding minimum fluidization velocity.en
dc.format.extent13
dc.identifier.bibliographicCitationHernández-Jiménez, F., Garcia-Gutierrez, L., Acosta-Iborra, A. & Soria-Verdugo, A. (2019). Numerical study of the effect of pressure and temperature on the fluidization of solids with air and (supercritical) CO2. The Journal of Supercritical Fluids, vol. 147, pp. 271–283.en
dc.identifier.doihttps://doi.org/10.1016/j.supflu.2018.11.008
dc.identifier.issn0896-8446
dc.identifier.publicationfirstpage271
dc.identifier.publicationlastpage283
dc.identifier.publicationtitleThe Journal of Supercritical Fluidsen
dc.identifier.publicationvolume147
dc.identifier.urihttps://hdl.handle.net/10016/32505
dc.identifier.uxxiAR/0000022224
dc.language.isoeng
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. ENE2015-69486-Res
dc.rights© 2018 Elsevier B.V.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaFísicaes
dc.subject.otherSupercritical fluiden
dc.subject.otherFluidized beden
dc.subject.otherTwo-fluid modelen
dc.titleNumerical study of the effect of pressure and temperature on the fluidization of solids with air and (supercritical) CO2en
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Numerical_JSF_2019_ps.pdf
Size:
11.94 MB
Format:
Adobe Portable Document Format