Publication:
Experimental performance comparison of three flat sheet membranes operating in an adiabatic microchannel absorber

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Tecnologías Apropiadas para el Desarrollo Sosteniblees
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería de Sistemas Energéticoses
dc.contributor.authorGarcía Hernando, Néstor
dc.contributor.authorVenegas Bernal, María Carmen
dc.contributor.authorVega Blázquez, Mercedes de
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-04-23T09:33:34Z
dc.date.available2021-04-23T09:33:34Z
dc.date.issued2019-04
dc.description.abstractA microchannel absorber working adiabatically with the H2O-LiBr pair was tested experimentally using three different nanofibrous flat membranes separating the vapour from the solution. Pore diameters of the membranes were 1 and 0.45 mu m, and thicknesses vary from 25 to 175 mu m. The experimental absorption rates varied from 1.5.10(-3) to 2.6.10(-3) kg/m(2) s varying linearly with the solution mass flow rate circulating through the channels. The reduction in pore diameter from 1 mu m to 0.45 mu m induced the need for higher pressure potential or solution mass flow rate to obtain similar performance. Relationships between changes in diameter pore and membrane thickness from previous models were used to quantify the effect of these membranes characteristics on the absorption ratio. The analytical results compared well with our experiments. In the present design, the solution film thickness was 150 mu m and the solution mass transfer resistance dominated the process. The experimental overall resistances, compared with calculated values from correlations used in previous models, showed differences below 30%.en
dc.format.extent9
dc.identifier.bibliographicCitationGarcía-Hernando, N., Venegas, M. & de Vega, M. (2019). Experimental performance comparison of three flat sheet membranes operating in an adiabatic microchannel absorber. Applied Thermal Engineering, vol. 152, pp. 835–843.en
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2019.02.129
dc.identifier.issn1359-4311
dc.identifier.publicationfirstpage835
dc.identifier.publicationlastpage843
dc.identifier.publicationtitleApplied Thermal Engineeringen
dc.identifier.publicationvolume152
dc.identifier.urihttps://hdl.handle.net/10016/32469
dc.identifier.uxxiAR/0000023664
dc.language.isoeng
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. DPI2017-83123-Res
dc.rights© 2019 Elsevier Ltd.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaEnergías Renovablesen
dc.subject.otherCooling absorptionen
dc.subject.otherMicrochannel absorberen
dc.subject.otherMembranesen
dc.subject.otherH2O-LiBren
dc.subject.otherAbsorptionen
dc.subject.otherDesignen
dc.subject.otherImpacten
dc.titleExperimental performance comparison of three flat sheet membranes operating in an adiabatic microchannel absorberen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Experimental_ATE_2019_ps.pdf
Size:
838.16 KB
Format:
Adobe Portable Document Format