Publication:
Electrospun nickel nanoparticles@poly(vinylidene fluoride-hexafluoropropylene) nanofibers as effective and reusable catalyst for H2 generation from sodium borohydride

dc.affiliation.dptoUC3M. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Químicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Materiales compuestos poliméricos e interfaseses
dc.contributor.authorAl Enizi, Abdullah M.
dc.contributor.authorEl Halwany, M. M.
dc.contributor.authorShaikh, Shoyebmohamad F.
dc.contributor.authorPandit, Bidhan
dc.contributor.authorYousef, Ayman
dc.date.accessioned2023-04-17T13:35:33Z
dc.date.available2023-04-17T13:35:33Z
dc.date.issued2022-11
dc.description.abstractNickel nanoparticles (Ni NPs) supported on Poly(vinylidene fluoride-co-hexafluoropropylene) nanofibers (PVDF-HFP NFs) were successfully synthesized through electrospinning and in-situ reduction of Ni2+ salts into the surface of PVDF-HFP NFs to form metallic Ni NPs@PVDF-HFP NFs. Different percentages of nickel acetate tetrahydrate (NiAc) (10 %, 20 %, 30 %, 40 % wt.) based PVDF-HFP. The formation of tiny metallic Ni NPs @PVDF-HFP membrane NFs was demonstrated using standard physiochemical techniques. Nanofibers membranes have demonstrated good catalytic activity in H2 production from sodium borohydride (NaBH4). The sample composed of 40 %wt Ni showed the highest catalytic activity compared to the other formulations. Whereas 103 mL of H2, from the hydrolysis of 1.34 mmol NaBH4, was produced using 40 wt% NiAc compared to 68 mL, 81 mL, and 93 mL for 10 wt%, 20 wt%, and 30 wt% NiAc, respectively, in 60 min at 25 °C. The hydrogen generation has been enhanced with an increase in the Nanofibers membrane amount and reaction temperature. The latter results in a low activation energy (23.52 kJ mol−1). The kinetics study revealed that the reaction was pseudo-first-order in sodium borohydride concentration and catalyst amount. Furthermore, the catalyst exhibits satisfactory stability in the hydrolysis process for ten cycles. Because of its easy recyclability, the introduced catalyst has a wide range of potential applications in the generation of H2 from sodium borohydride hydrolysis.en
dc.description.sponsorshipThe authors extend their sincere appreciation to the Researchers Supporting Project number (RSP-2021/370), King Saud University, Riyadh, Saudi Arabia, for the financial support.en
dc.format.extent14
dc.identifier.bibliographicCitationAl-Enizi, A. M., Yousef, A., Shaikh, S. F., Sankapal, B. R., & El-Halwany, M. (2022). Electrospun nickel nanoparticles@poly(vinylidene fluoride-hexafluoropropylene) nanofibers as effective and reusable catalyst for H2 generation from sodium borohydride. Arabian Journal of Chemistry, 15(11), 104207.en
dc.identifier.doihttps://doi.org/10.1016/j.arabjc.2022.104207
dc.identifier.issn1878-5352
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue11, 104207
dc.identifier.publicationlastpage14
dc.identifier.publicationtitleArabian Journal of Chemistryen
dc.identifier.publicationvolume15
dc.identifier.urihttps://hdl.handle.net/10016/37110
dc.identifier.uxxiAR/0000031830
dc.language.isoeng
dc.publisherElsevieren
dc.rights© 2022 The Authors.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaBiología y Biomedicinaes
dc.subject.ecienciaEnergías Renovableses
dc.subject.ecienciaIngeniería Civil y de la Construcciónes
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaMaterialeses
dc.subject.ecienciaMedio Ambientees
dc.subject.ecienciaQuímicaes
dc.subject.otherElectrospinningen
dc.subject.otherHydrogenen
dc.subject.otherNanofibersen
dc.subject.otherNi@Pvdf-Hfpen
dc.subject.otherSodium borohydrideen
dc.titleElectrospun nickel nanoparticles@poly(vinylidene fluoride-hexafluoropropylene) nanofibers as effective and reusable catalyst for H2 generation from sodium borohydrideen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Electrospun_AJC_2022.pdf
Size:
5.21 MB
Format:
Adobe Portable Document Format