Publication:
Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Dinámica y Fractura de Elementos Estructuraleses
dc.contributor.authorGarcía-Salaberri, Pablo A.
dc.contributor.authorVera Coello, Marcos
dc.contributor.authorZaera, Ramón
dc.date.accessioned2012-10-29T11:56:55Z
dc.date.available2012-10-29T11:56:55Z
dc.date.issued2011-09
dc.description.abstractPEM fuel cell assembly pressure is known to cause large strains in the gas diffusion layer (GDL), which results in significant changes in its mechanical, electrical and thermal properties. These changes affect the rates of mass, charge, and heat transport through the GDL, thus impacting fuel cell performance and lifetime. The appropriate modeling of the inhomogeneous GDL compression process associated with the repetitive channel rib pattern is therefore essential for a detailed description of the physical chemical processes that take place in the cell. In this context, the mechanical characterization of the GDL is of special relevance, since its microstructure based on carbon fibers has strongly nonlinear orthotropic properties. The present study describes a new finite element model which fully incorporates the nonlinear orthotropic characteristics of the GDL, thereby improving the prediction of the inhomogeneous compression effects in this key element of the cell. Among other conclusions, the numerical results show that the linear isotropic models widely reported in the literature tend to overestimate the porosity and the partial intrusion of the GDL in the channel region, and may lead to incorrect predictions in terms of interfacial contact pressure distributions.
dc.description.sponsorshipThis work was supported by Project ENE2008 06683 C03 02 of the Spanish Ministerio de Ciencia e Innovación (GS1).
dc.description.statusPublicado
dc.format.mimetypeapplication/pdf
dc.identifier.bibliographicCitationInternational Journal of Hydrogen Energy, vol. 36, n. 18, sep. 2011. Pp. 11856-11870
dc.identifier.doi10.1016/j.ijhydene.2011.05.152
dc.identifier.issn0360-3199
dc.identifier.publicationfirstpage11856
dc.identifier.publicationissue18
dc.identifier.publicationlastpage11870
dc.identifier.publicationtitleInternational Journal of Hydrogen Energy
dc.identifier.publicationvolume36
dc.identifier.urihttp://hdl.handle.net/10016/15774
dc.language.isoeng
dc.publisherElsevier
dc.relation.projectIDGobierno de España. ENE2008-06683-C03-02
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.ijhydene.2011.05.152
dc.rights© Elsevier Ltd.
dc.rights.accessRightsopen access
dc.subject.ecienciaIngeniería Mecánica
dc.subject.ecienciaIngeniería Industrial
dc.subject.otherPEM fuel cells
dc.subject.otherAssembly pressure
dc.subject.otherGas diffusion layers
dc.subject.otherInhomogeneous compression
dc.subject.otherNonlinear orthotropic model
dc.titleNonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
nonlinear_IJHE_2011_ps.pdf
Size:
1.76 MB
Format:
Adobe Portable Document Format