Publication:
Magneto-mechanical system to reproduce and quantify complex strain patterns in biological materials

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.dptoUC3M. Departamento de Bioingenieríaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Dinámica y Fractura de Elementos Estructuraleses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Tissue Engineering and Regenerative Medicine (TERMeG)es
dc.contributor.authorMoreno Mateos, Miguel Ángel
dc.contributor.authorGonzález-Rico, Jorge
dc.contributor.authorNunez-Sardinha, Emanuel
dc.contributor.authorGómez Cruz, Clara
dc.contributor.authorLópez-Donaire, María Luisa
dc.contributor.authorLucarini San José, Sergio
dc.contributor.authorArias Hernández, Ángel
dc.contributor.authorMuñoz Barrutia, María Arrate
dc.contributor.authorVelasco Bayón, Diego
dc.contributor.authorGarcía González, Daniel
dc.contributor.funderComunidad de Madrides
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es
dc.contributor.funderUniversidad Carlos III de Madrides
dc.date.accessioned2023-01-30T10:49:28Z
dc.date.available2023-01-30T10:49:28Z
dc.date.issued2022-06
dc.description.abstractBiological cells and tissues are continuously subjected to mechanical stress and strain cues from their surrounding substrate. How these forces modulate cell and tissue behavior is a major question in mechanobiology. To conduct studies under controlled varying physiological strain scenarios, a new virtually-assisted experimental system is proposed allowing for non-invasive and real-time control of complex deformation modes within the substrates. This approach is based on the use of extremely soft magneto-active polymers, which mimic the stiffness of biological materials. Thus, the system enables the untethered control of biological substrates providing reversible mechanical changes and controlling heterogeneous patterns. Motivated on a deep magneto-mechanical characterization across scales, a multi-physics and multi-scale in silico framework was developed to guide the experimental stimulation setup. The versatility and viability of the system have been demonstrated through its ability to reproduce complex mechanical scenarios simulating local strain patterns in brain tissue during a head impact, and its capability to transmit physiologically relevant mechanical forces to dermal fibroblasts. The proposed framework opens the way to understanding the mechanobiological processes that occur during complex and dynamic deformation states, e.g., in traumatic brain injury, pathological skin scarring or fibrotic heart remodeling during myocardial infarction.en
dc.description.sponsorshipThe authors thank Denis Wirtz (Johns Hopkins University) and Jean-Christophe Olivo-Marin (Institute Pasteur) for relevant discussion. The authors acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Program (Grant agreement No. 947723, project: 4D-BIOMAP), and from Programa de Apoyo a la Realizacion de Proyectos Interdiscisplinares de I+D para Jovenes Investigadores de la Universidad Carlos III de Madrid and Comunidad de Madrid (project: BIOMASKIN). MAMM and CGC acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874 and FPU20/01459) and DGG acknowledges support from the Talent Attraction grant (CM 2018 - 2018-T2/IND-9992) from the Comunidad de Madrid.en
dc.format.extent15
dc.identifier.bibliographicCitationMoreno-Mateos, M. A., Gonzalez-Rico, J., Nunez-Sardinha, E., Gomez-Cruz, C., Lopez-Donaire, M. L., Lucarini, S., Arias, A., Muñoz-Barrutia, A., Velasco, D. & Garcia-Gonzalez, D. (2022). Magneto-mechanical system to reproduce and quantify complex strain patterns in biological materials. Applied Materials Today, 27, 101437.en
dc.identifier.doihttps://doi.org/10.1016/j.apmt.2022.101437
dc.identifier.issn2352-9407
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue101437
dc.identifier.publicationlastpage15
dc.identifier.publicationtitleApplied Materials Todayen
dc.identifier.publicationvolume27
dc.identifier.urihttps://hdl.handle.net/10016/36402
dc.identifier.uxxiAR/0000030353
dc.language.isoengen
dc.publisherElsevier
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/947723
dc.relation.projectIDComunidad de Madrid. BIOMASKIN-CM-UM3Mes
dc.relation.projectIDGobierno de España. FPU19/03874es
dc.relation.projectIDGobierno de España. FPU20/01459es
dc.relation.projectIDComunidad de Madrid. CM 2018-2018-T2/IND-9992es
dc.relation.projectIDAT-2022
dc.rights© 2022 The Authors.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaBiología y Biomedicinaes
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.ecienciaIngeniería Navales
dc.subject.ecienciaMaterialeses
dc.subject.otherMagneto-active materialsen
dc.subject.otherMultifunctional substratesen
dc.subject.otherMechanobiologyen
dc.subject.otherComputational modelingen
dc.subject.otherBiomechanical stimulationen
dc.titleMagneto-mechanical system to reproduce and quantify complex strain patterns in biological materialsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Magneto-mechanical_AMT_2022.pdf
Size:
4.77 MB
Format:
Adobe Portable Document Format