Publication:
In-situ electrochemical synthesis of inorganic compounds for materials conservation: Assessment of their effects on the porous structure

dc.affiliation.dptoUC3M. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Químicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Tecnología de Polvoses
dc.contributor.authorGómez Villalba, Luz Stella
dc.contributor.authorFeijoo, Jorge
dc.contributor.authorRabanal Jiménez, María Eugenia
dc.contributor.authorFort, R.
dc.contributor.funderComunidad de Madrides
dc.contributor.funderMinisterio de Ciencia, Innovación y Universidades (España)es
dc.date.accessioned2022-07-20T10:34:07Z
dc.date.available2022-07-20T10:34:07Z
dc.date.issued2021-11-01
dc.description.abstractThis study refers to the application of in-situ electrochemical synthesis as an alternative method to improve the properties of porous materials against harmful external agents that deteriorate them. It is oriented to an understanding of the effects of crystallisation on the pore structure of different compounds commonly used in the restoration and conservation of porous materials (historical ceramics, building walls, sculptures, or biomedical applications). It analyses the microstructural, chemical details, and stability of the neo-formed phases that modify the pore network. The electrochemical synthesis was carried out at ambient temperature (20 °C), over high porous sandstone for crystallising Ca carbonate, Mg carbonate, Ca phosphate, and Ca oxalate compounds. Based on the neo-formed minerals, a comparison was made depending on their specific properties defining how they affected the pore structure. The characterisation included polarised light optical microscopy, environmental and field-emission scanning electron microscopy, digital image analysis, cathodoluminescence (CL-ESEM),energy-dispersive X-ray spectroscopy, and X-ray microdiffraction. Aragonite, hydromagnesite, hydroxyapatite, and whewellite were identified as the majority phases depending on the treatment. Phase transformation, dehydration, and dissolution-re-precipitation processes suggested different degrees of stability, including aragonite/calcite (CaCO3 treatment) and hydromagnesite/magnesite (MgCO3 treatment) transformations and simultaneous crystallisation of brushite/hydroxyapatite ((Ca3(PO4)2 treatment). Electrocrystallisation induced changes in inter-granular porosity, the development of secondary porosity inherent to the minerals, and differences in pore cementation depending on its mineralogy. Among the treatments, Mg carbonate reduced porosity most effectively, followed in descending order by calcium carbonate and calcium phosphate, being the calcium oxalate the less effective.en
dc.description.sponsorshipThis work was funded by the following projects: TOP-HERITAGE- (Technologies in Heritage Sciences (S2018/NMT_4372, Community of Madrid); MULTIMAT CHALLENGE: Multifunctional Materials for Society Challenges (S2013/MIT-2862, Community of Madrid); Additive Manufacturing: from material to application, ADITIMAT-CM (S2018/ NMT-4411, Community of Madrid); MAT2016-80875-C3-3-R, (Spanish Ministry of Science, Innovation and Universities); Author J.F.‘s participation was supported by a Spanish Ministry of Sciences, Innovation and Universities Juan de la Cierva grant.en
dc.format.extent18
dc.identifier.bibliographicCitationGomez-Villalba, L. S., Feijoo, J., Rabanal, M. E., & Fort, R. (2021). In-situ electrochemical synthesis of inorganic compounds for materials conservation: Assessment of their effects on the porous structure. In Ceramics International, 47(21), 30406–30424en
dc.identifier.doihttps://doi.org/10.1016/j.ceramint.2021.07.221
dc.identifier.issn0272-8842
dc.identifier.publicationfirstpage30406
dc.identifier.publicationissue21
dc.identifier.publicationlastpage30424
dc.identifier.publicationtitleCERAMICS INTERNATIONALen
dc.identifier.publicationvolume47
dc.identifier.urihttps://hdl.handle.net/10016/35505
dc.identifier.uxxiAR/0000029400
dc.language.isoengen
dc.publisherELSEVIER BVen
dc.relation.projectIDComunidad de Madrid. S2013/MIT-2862es
dc.relation.projectIDGobierno de España. MAT2016-80875-C3-3-Res
dc.relation.projectIDComunidad de Madrid. S2018/NMT-4411es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0272884221022616?via%3Dihuben
dc.rights© 2021 Elsevier Ltd and Techna Group S.r.l. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaMaterialeses
dc.subject.otherIn-situ electrochemical synthesisen
dc.subject.otherPorous materialsen
dc.subject.otherPore-structure modificationen
dc.subject.otherAragoniteen
dc.subject.otherCalciteen
dc.subject.otherHydromagnesiteen
dc.subject.otherHydroxyapatiteen
dc.subject.otherWhewelliteen
dc.titleIn-situ electrochemical synthesis of inorganic compounds for materials conservation: Assessment of their effects on the porous structureen
dc.typeresearch article*
dc.type.hasVersionSMUR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Insitu_CI_2021.pdf
Size:
12.93 MB
Format:
Adobe Portable Document Format