Publication:
Modeling dynamic formability of porous ductile sheets subjected to biaxial stretching: Actual porosity versus homogenized porosity

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Nonlinear Solid Mechanicses
dc.contributor.authorNieto Fuentes, Juan Carlos
dc.contributor.authorJacques, N.
dc.contributor.authorMarvi Mashhadi, Mohammad
dc.contributor.authorN Souglo, Komi Espoir
dc.contributor.authorRodríguez-Martínez, José A.
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.date.accessioned2023-04-18T10:32:13Z
dc.date.available2023-04-18T10:32:13Z
dc.date.issued2022-11
dc.description.abstractThis paper investigates the effect of porous microstructure on the necking formability of ductile sheets subjected to dynamic in-plane stretching. We have developed an original approach in which finite element calculations which include actual void distributions obtained from additively manufactured materials are compared with simulations in which the specimen is modeled with the Gurson–Tvergaard continuum plasticity theory (Gurson, 1977; Tvergaard, 1982) which considers porosity as an internal state variable. A key point of this work is that in the calculations performed with the continuum model, the initial void volume fraction is spatially varied in the specimen according to the void distributions included in the simulations with the actual porous microstructure. The finite element computations have been carried out for different loading conditions, with biaxial strain ratios ranging from 0 (plane strain) to 0.75 (biaxial tension) and loading rates varying between 10000 s −1 and 60000 s −1. We have shown that for the specific porous microstructures considered, the necking forming limits obtained with the Gurson–Tvergaard continuum model are in qualitative agreement with the results obtained with the calculations which include the actual void distributions, the quantitative differences for the necking strains being generally less than ≈ 25% (the calculations with actual voids systematically predict greater necking strains). In addition, the spatial distribution of necks formed in the sheets at large strains is very similar for the actual porosity and the homogenized porosity models. The obtained results demonstrate that the voids promote plastic localization, acting as preferential sites for the nucleation of fast growing necks. Moreover, the simulations have provided individualized correlations between void volume fraction, maximum void size and necking formability, and highlighted the influence of the heterogeneity of the spatial distribution of porosity on plastic localization.en
dc.description.sponsorshipThe research leading to these results has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme. Project PURPOSE, grant agreement 758056. J. C. Nieto-Fuentes acknowledges support from the CONEX-Plus programme funded by Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovation programme, under the Marie Sklodowska-Curie grant agreement 801538. J. A. Rodríguez-Martínez acknowledges the financial support provided by the Spanish Ministry of Science and Innovation under the programme Proyectos I+D Excelencia 2017. Project APPLIED, DPI2017-88608-P.en
dc.format.extent30
dc.identifier.bibliographicCitationNieto-Fuentes, J. C., Jacques, N., Marvi-Mashhadi, M., N’souglo, K., & Rodríguez-Martínez, J. (2022). Modeling dynamic formability of porous ductile sheets subjected to biaxial stretching: Actual porosity versus homogenized porosity. International Journal of Plasticity, 158, 103418.en
dc.identifier.doihttps://doi.org/10.1016/j.ijplas.2022.103418
dc.identifier.issn0749-6419
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue103418
dc.identifier.publicationlastpage30
dc.identifier.publicationtitleInternational Journal of Plasticityen
dc.identifier.publicationvolume158
dc.identifier.urihttps://hdl.handle.net/10016/37118
dc.identifier.uxxiAR/0000031838
dc.language.isoeng
dc.publisherElsevieren
dc.relation.datasethttps://doi.org/10.21950/TYNG2N
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/GA-758056
dc.relation.projectIDGobierno de España. DPI2017-88608-Pes
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/GA-801538
dc.relation.projectIDAT-2022
dc.rights© 2022 The Author(s).en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaMatemáticases
dc.subject.ecienciaMaterialeses
dc.subject.otherFinite element simulationsen
dc.subject.otherFormabilityen
dc.subject.otherInertiaen
dc.subject.otherNeckingen
dc.subject.otherPorous microstructureen
dc.titleModeling dynamic formability of porous ductile sheets subjected to biaxial stretching: Actual porosity versus homogenized porosityen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Modeling_IJP_2022.pdf
Size:
5.58 MB
Format:
Adobe Portable Document Format