Publication:
After DART: Using the first full-scale test of a kinetic impactor to inform a future planetary defense mission

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.contributor.authorStatler, Thomas S.
dc.contributor.authorHerreros Cid, María Isabel
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.date.accessioned2023-02-22T11:33:03Z
dc.date.available2023-02-22T11:33:03Z
dc.date.issued2022-10
dc.descriptionDocumento escrito por un elevado número de autores/as, solo se referencia el/la que aparece en primer lugar y los/as autores/as pertenecientes a la UC3M.es
dc.description.abstractNASA's Double Asteroid Redirection Test (DART) is the first full-scale test of an asteroid deflection technology. Results from the hypervelocity kinetic impact and Earth-based observations, coupled with LICIACube and the later Hera mission, will result in measurement of the momentum transfer efficiency accurate to ∼10% and characterization of the Didymos binary system. But DART is a single experiment; how could these results be used in a future planetary defense necessity involving a different asteroid? We examine what aspects of Dimorphos's response to kinetic impact will be constrained by DART results; how these constraints will help refine knowledge of the physical properties of asteroidal materials and predictive power of impact simulations; what information about a potential Earth impactor could be acquired before a deflection effort; and how design of a deflection mission should be informed by this understanding. We generalize the momentum enhancement factor β, showing that a particular direction-specific β will be directly determined by the DART results, and that a related direction-specific β is a figure of merit for a kinetic impact mission. The DART β determination constrains the ejecta momentum vector, which, with hydrodynamic simulations, constrains the physical properties of Dimorphos's near-surface. In a hypothetical planetary defense exigency, extrapolating these constraints to a newly discovered asteroid will require Earth-based observations and benefit from in situ reconnaissance. We show representative predictions for momentum transfer based on different levels of reconnaissance and discuss strategic targeting to optimize the deflection and reduce the risk of a counterproductive deflection in the wrong direction.en
dc.description.sponsorshipThis work was supported in part by the DART mission, NASA contract No. 80MSFC20D0004 to JHU/APL. Some of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.C. acknowledges funding through the Crosby Fellowship of the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology. E.D., S.I., A.L., M.P., A.R., and P.T. are grateful to the Italian Space Agency (ASI) for financial support through agreement No. 2019-31-HH.0 in the context of ASI's LICIACube mission, and agreement No. 2022-8-HH.0 for ESA's Hera mission. R.L. appreciates the funding from the European Union's Horizon 2020 research and innovation program, grant agreement No. 870377 (project NEO-MAPP). P.M. acknowledges funding support from the French space agency CNES, ESA and the European Union's Horizon 2020 research and innovation program under grant agreement No. 870377 (project NEO-MAPP). R.M. acknowledges support from a NASA Space Technology Graduate Research Opportunities (NSTGRO) Award (80NSSC22K1173). R.N. acknowledges support from NASA/FINESST (NNH20ZDA001N). J.O. and I.H. were supported by the Spanish State Research Agency (AEI) project No. MDM-2017-0737 Unidad de Excelencia "María de Maeztu"—Centro de Astrobiología (CSIC-INTA). They are also grateful for all logistical support provided by Instituto Nacional de Técnica Aeroespacial (INTA). S.R.S. acknowledges support from the DART Participating Scientist Program, grant No. 80NSSC22K0318. J.M.T.R. was funded by FEDER/Ministerio de Ciencia e Innovación—Agencia Estatal de Investigación of Spain (grant No. PGC2018-097374-B-I00).en
dc.format.extent18
dc.identifier.bibliographicCitationStatler, T. S., et al. (2022). After DART: Using the First Full-scale Test of a Kinetic Impactor to Inform a Future Planetary Defense Mission. The Planetary Science Journal, 3(10), 244.en
dc.identifier.doihttps://doi.org/10.3847/PSJ/ac94c1
dc.identifier.issn2632-3338
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue10
dc.identifier.publicationlastpage18
dc.identifier.publicationtitleThe Planetary Science Journalen
dc.identifier.publicationvolume3
dc.identifier.urihttps://hdl.handle.net/10016/36640
dc.identifier.uxxiAR/0000031287
dc.language.isoeng
dc.publisherIOP Scienceen
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/870377
dc.relation.projectIDGobierno de España. MDM-2017-0737es
dc.relation.projectIDGobierno de España. PGC2018-097374-B-I00es
dc.rights© 2022. The Author(s)en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaAeronáuticaes
dc.subject.ecienciaFísicaes
dc.subject.ecienciaFusiónes
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherAsteroidsen
dc.subject.otherNear-earth objectsen
dc.subject.otherAsteroid satellitesen
dc.subject.otherAsteroid surfacesen
dc.subject.otherImpact phenomenaen
dc.titleAfter DART: Using the first full-scale test of a kinetic impactor to inform a future planetary defense missionen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
After_TPSJ_2022.pdf
Size:
5.47 MB
Format:
Adobe Portable Document Format
Description: