Publication:
Blood stasis imaging predicts cerebral microembolism during acute myocardial infarction

Research Projects
Organizational Units
Journal Issue
Abstract
Background: Cardioembolic stroke is a major source of mortality and disability worldwide. The authors hypothesized that quantitative characterization of intracardiac blood stasis may be useful to determine cardioembolic risk in order to personalize anticoagulation therapy. The aim of this study was to assess the relationship between image-based metrics of blood stasis in the left ventricle and brain microembolism, a surrogate marker of cardiac embolism, in a controlled animal experimental model of acute myocardial infarction (AMI). -- Methods: Intraventricular blood stasis maps were derived from conventional color Doppler echocardiography in 10 pigs during anterior AMI induced by sequential ligation of the mid and proximal left anterior descending coronary artery (AMI-1 and AMI-2 phases). From these maps, indices of global and local blood stasis were calculated, such as the average residence time and the size and ratio of contact with the endocardium of blood regions with long residence times. The incidence of brain microemboli (high-intensity transient signals [HITS]) was monitored using carotid Doppler ultrasound. -- Results: HITS were detected in 0%, 50%, and 90% of the animals at baseline and during AMI-1 and AMI-2 phases, respectively. The average residence time of blood in the left ventricle increased in parallel. The residence time performed well to predict microemboli (C-index = 0.89, 95% CI, 0.75–1.00) and closely correlated with the number of HITS (R = 0.87, P < .001). Multivariate and mediation analyses demonstrated that the number of HITS during AMI phases was best explained by stasis. Among conventional echocardiographic variables, only apical wall motion score weakly correlated with the number of HITS (R = 0.3, P = .04). Mural thrombosis in the left ventricle was ruled out in all animals. -- Conclusions: The degree of stasis of blood in the left ventricle caused by AMI is closely related to the incidence of brain microembolism. Therefore, stasis imaging is a promising tool for a patient-specific assessment of cardioembolic risk.
Description
Keywords
Stroke, Blood stasis, Acute myocardial infarction, Anticoagulation therapy, Doppler echocardiography
Bibliographic citation
Delgado-Montero, A., Martínez-Legazpi, P., Desco, M., Rodríguez-Pérez, D., Díaz-Otero, F., Rossini, L., Pérez Del Villar, C., Rodríguez-González, E., Chazo, C., Benito, Y., Flores, O., Antoranz, J. C., Fernández-Avilés, F., Del Álamo, J. C., & Bermejo, J. (2020). Blood stasis imaging predicts cerebral microembolism during acute myocardial infarction. Journal of The American Society of Echocardiography, 33(3), 389-398.