Publication:
Micromechanical study on the origin of fiber bridging under interlaminar and intralaminar mode I failure

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.contributor.authorNaya Montans, Fernando
dc.contributor.authorPappas, G.
dc.contributor.authorBotsis, J.
dc.date.accessioned2022-02-08T08:45:04Z
dc.date.available2022-02-08T08:45:04Z
dc.date.issued2019-02-15
dc.description.abstractFiber reinforced polymers (FRPs) subjected to mode I fracture show important toughening due to the development of large scale bridging (LSB). Experimental studies of this phenomenon in unidirectional carbon/epoxy laminates using double cantilever beam specimens, demonstrate important differences in R-curve response for inter- and intralaminar fracture. Post fracture observation of composite’s cross-section pointed out dissimilar fiber bundle size and shape, as the main origin of their differences. In the present paper, representative volume elements with the composite’s constituents, based on the actual material microstructure, and homogenized 2D finite element models were developed to study the effects of microstructure on the first stage of damage leading to LSB development in carbon/epoxy composites under mode I fracture. The differences between inter- and intralaminar fracture were investigated along with the influence of fiber dispersion and the presence of interply and intraply resin-rich zones. The numerical simulations captured different microcrack morphologies for inter- and intralaminar fracture, supporting the experimental observations, while parametric studies showed the influence of the microstructure in the formation of LSB. In particular, fiber dispersion within a ply and resin rich zone between plies play significant roles in mode I fracture and can be used to control toughening mechanisms in FRPs.en
dc.format.extent15
dc.identifier.bibliographicCitationNaya, F., Pappas, G. & Botsis, J. (2019). Micromechanical study on the origin of fiber bridging under interlaminar and intralaminar mode I failure. Composite Structures, 210, 877–891.en
dc.identifier.doihttps://doi.org/10.1016/j.compstruct.2018.11.064
dc.identifier.issn0263-8223
dc.identifier.publicationfirstpage877
dc.identifier.publicationlastpage891
dc.identifier.publicationtitleComposite Structuresen
dc.identifier.publicationvolume210
dc.identifier.urihttps://hdl.handle.net/10016/34061
dc.identifier.uxxiCC/0000032909
dc.language.isoengen
dc.publisherElsevieren
dc.rights© 2018 Elsevier Ltd. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherPolymer-matrix composites (PMCs)en
dc.subject.otherComputational micromechanics (RVE)en
dc.subject.otherIntralaminaren
dc.subject.otherInterlaminaren
dc.subject.otherMicrostructureen
dc.subject.otherFiber bridging & fracture toughnessen
dc.titleMicromechanical study on the origin of fiber bridging under interlaminar and intralaminar mode I failureen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Micromechanical_CS_2019_ps.pdf
Size:
23.48 MB
Format:
Adobe Portable Document Format