Publication:
Powering stellar magnetism: energy transfers in cyclic dynamos of sun-like stars

dc.affiliation.dptoUC3M. Departamento de Físicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Física de Plasmases
dc.contributor.authorBrun, Allan Sacha
dc.contributor.authorStrugarek, Antoine
dc.contributor.authorNoraz, Quentin
dc.contributor.authorPerri, Barbara
dc.contributor.authorVarela Rodríguez, Jacobo
dc.contributor.authorAugustson, Kyle
dc.contributor.authorCharbonneau, Paul
dc.contributor.authorToomre, Juri
dc.date.accessioned2023-01-25T14:34:05Z
dc.date.available2023-01-25T14:34:05Z
dc.date.issued2022-02-10
dc.description.abstractWe use the anelastic spherical harmonic code to model the convective dynamo of solar-type stars. Based on a series of 15 3D MHD simulations spanning four bins in rotation and mass, we show what mechanisms are at work in these stellar dynamos with and without magnetic cycles and how global stellar parameters affect the outcome. We also derive scaling laws for the differential rotation and magnetic field based on these simulations. We find a weaker trend between differential rotation and stellar rotation rate, (ΔΩ∞(IΩI/Ω⊛) 0.46) in the MHD solutions than in their HD counterpart ((IΩI/Ω⊛) 0.66), yielding a better agreement with the observational trends based on power laws. We find that for a fluid Rossby number between 0.15 ≲ Rof ≲ 0.65, the solutions possess long magnetic cycle, if Rof ≲ 0.42 a short cycle and if Rof ≲ 1 (antisolar-like differential rotation), a statistically steady state. We show that short-cycle dynamos follow the classical Parker–Yoshimura rule whereas the long-cycle period ones do not. We also find efficient energy transfer between reservoirs, leading to the conversion of several percent of the starʼs luminosity into magnetic energy that could provide enough free energy to sustain intense eruptive behavior at the star’s surface. We further demonstrate that the Rossby number dependency of the large-scale surface magnetic field in the simulation ( BL,surf ~ Rof -1.26) agrees better with observations ( Bv~ Ros -1.4 ± 0.1) and differs from dynamo scaling based on the global magnetic energy (Bbulk ~Rof -0.5).en
dc.format.extent35
dc.identifier.bibliographicCitationBrun, A. S., Strugarek, A., Noraz, Q., Perri, B., Varela, J., Augustson, K., Charbonneau, P. & Toomre, J. (2022). Powering Stellar Magnetism: Energy Transfers in Cyclic Dynamos of Sun-like Stars. The Astrophysical Journal, 926(1), 21.en
dc.identifier.doihttps://doi.org/10.3847/1538-4357/ac469b
dc.identifier.issn0004-637X
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue1
dc.identifier.publicationlastpage35
dc.identifier.publicationtitleThe Astrophysical Journalen
dc.identifier.publicationvolume926
dc.identifier.urihttps://hdl.handle.net/10016/36363
dc.identifier.uxxiAR/0000031169
dc.language.isoeng
dc.publisherIOP Scienceen
dc.rights© 2022. The Author(s).en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaEnergía Nucleares
dc.subject.ecienciaFísicaes
dc.subject.otherSolar dynamoen
dc.subject.otherSolar magnetic fieldsen
dc.subject.otherStellar magnetic fieldsen
dc.subject.otherStellar rotationen
dc.subject.otherSolar differential rotationen
dc.subject.otherMagnetohydrodynamicsen
dc.subject.otherStellar convection envelopesen
dc.subject.otherMagnetohydrodynamical simulationsen
dc.subject.otherSolar analogsen
dc.subject.otherK starsen
dc.subject.otherG starsen
dc.titlePowering stellar magnetism: energy transfers in cyclic dynamos of sun-like starsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Powering_TAJ_2022.pdf
Size:
25.88 MB
Format:
Adobe Portable Document Format