Publication:
The role of non-thermal electrons in flame acceleration

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.contributor.authorMurphy, Daniel C.
dc.contributor.authorSánchez Sanz, Mario
dc.contributor.authorFernández Pello, Carlos
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-02-17T12:53:20Z
dc.date.available2022-02-17T12:53:20Z
dc.date.issued2017-08
dc.description.abstractWe examine in this work the effect of an external electric field on the propagation velocity of a laminar, one-dimensional and lean premixed flame, with the final goal of clarifying the relative importance of each of the three different mechanisms postulated in the literature to explain the effect of electric fields on flames: ionic wind, kinetic enhancement by non-thermal electrons and ohmic heating. The onedimensional model proposed here expands the four-reactions scheme previously presented by SanchezSanz, et al. (2015) to include the effect of non-thermal electrons and activated neutral molecules on flame acceleration. Two additional reactions are included in the model to complete a minimum set of six elementary reaction capable of qualitatively reproduce the results observed in classical Uaggers, and Von Engel, (1971).) and recent (Volkov et al., 2013; Murphy, et al., 2014,) experiments. The limit of weakly ionized plasmas is used to integrate the Boltzmann equation and to derive an explicit expression for the electron temperature proportional to the square of the electric field. The numerical integration of the conservation equations gives the flame propagation velocity for a given set of parameters. The results reveal the importance of the electric field polarity on flame acceleration, finding faster flames for positive electric fields than for equally intense negative fields. At low-intensity fields, our results indicate that the ionic wind, and the associated redistribution of the charged particles, is the main mechanism inducing flame acceleration. In more intense fields, the combined effect of the ionic wind and the heat transfer from the high-temperature electrons to the background gas induces a significant increase in the temperature field upstream and downstream of the flame front.en
dc.description.sponsorshipThis work was supported by the Spanish MCINN through projects ENE2012-33213 and ENE2015-65852-C2-1-R.en
dc.format.extent10
dc.identifier.bibliographicCitationMurphy, D. C., Sánchez-Sanz, M. & Fernandez-Pello, C. (2017). The role of non-thermal electrons in flame acceleration. Combustion and Flame, 182, 48–57.en
dc.identifier.doihttps://doi.org/10.1016/j.combustflame.2017.04.018
dc.identifier.issn0010-2180
dc.identifier.publicationfirstpage48
dc.identifier.publicationlastpage57
dc.identifier.publicationtitleCombustion and Flameen
dc.identifier.publicationvolume182
dc.identifier.urihttps://hdl.handle.net/10016/34159
dc.identifier.uxxiAR/0000020307
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. ENE2012-33213es
dc.relation.projectIDGobierno de España. ENE2015-65852-C2-1-Res
dc.rights© 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherElectric fielden
dc.subject.otherFlame speeden
dc.subject.otherOhmic heatingen
dc.subject.otherIonic winden
dc.subject.otherActivated speciesen
dc.titleThe role of non-thermal electrons in flame accelerationen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Role_CF_2017_ps.pdf
Size:
669.86 KB
Format:
Adobe Portable Document Format