Publication:
1D two-phase, non-isothermal modeling of a proton exchange membrane water electrolyzer: An optimization perspective

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.contributor.authorGarcía-Salaberri, Pablo A.
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.date.accessioned2022-06-17T14:32:47Z
dc.date.available2024-02-15T00:00:05Z
dc.date.issued2022-02-15
dc.description.abstractProton exchange membrane water electrolyzers (PEMWEs) have experienced a renaissance as eco-friendly devices for the storage of renewable energy surpluses. However, the scarce attention paid to green hydrogen production in the last century demands optimization to make it an affordable and reliable technology. In this work, a 1D multi-phase, non-isothermal model of a PEMWE is presented, which accounts for a complete description of mass, charge and heat transport. The predictions show good agreement with previous experimental data of single cells and stacks. The validated model is used to analyze the effect of key operating conditions, electrochemical parameters and effective transport properties on efficiency and voltage losses. The results show that the most influential variables are the temperature, the catalyst layer (CL) exchange current density (especially at the anode) and the membrane (PEM) thickness. In addition, interfacial electrical and mass transport resistances must be small and the permeability of the porous transport layers (PTLs) sufficiently high to facilitate gas–liquid counterflow in the anode. Performance can be improved through the development of CLs with good activity, thin PEMs with low permeability and stability at elevated temperatures, and permeable PTLs with tailored two-phase properties. This design perspective must be accompanied of cheaper materials.en
dc.description.sponsorshipThis work was supported by the projects PID2019-106740RB-I00 and EIN2020-112247 (Spanish Agencia Estatal de Investigación) and the project PEM4ENERGY-CM-UC3M funded by the call “Programa de apoyo a la realización de proyectos interdisciplinares de I+D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020” under the frame of the “Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid”.en
dc.description.statusPublicadoes
dc.format.extent15
dc.identifier.bibliographicCitationJournal of Power Sources, (2022), v. 521, 230915.en
dc.identifier.doihttps://doi.org/10.1016/j.jpowsour.2021.230915
dc.identifier.issn0378-7753
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue230915
dc.identifier.publicationlastpage15
dc.identifier.publicationtitleJOURNAL OF POWER SOURCESen
dc.identifier.publicationvolume521
dc.identifier.urihttps://hdl.handle.net/10016/35170
dc.identifier.uxxiAR/0000029285
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. PID2019-106740RB-I00es
dc.relation.projectIDGobierno de España. EIN2020-112247es
dc.relation.projectIDAT-2022
dc.rights© 2021 Elsevier B.V. All rights reserved.es
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaEnergías Renovableses
dc.subject.otherPEM water electrolyzeren
dc.subject.otherEfficiencyen
dc.subject.otherModelingen
dc.subject.otherMembrane electrode assemblyen
dc.subject.otherOptimizationen
dc.title1D two-phase, non-isothermal modeling of a proton exchange membrane water electrolyzer: An optimization perspectiveen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files