Publication:
Modeling the Effect of Low Pt loading Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells. Part I: Model Formulation and Validation

dc.affiliation.dptoUC3M. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Químicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Síntesis y Procesado de Materialeses
dc.contributor.authorSánchez Ramos, Arturo
dc.contributor.authorGostick, Jeff T.
dc.contributor.authorGarcía-Salaberri, Pablo A.
dc.contributor.funderUniversidad Carlos III de Madrides
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.date.accessioned2022-06-22T07:42:51Z
dc.date.available2022-06-22T07:42:51Z
dc.date.issued2021-12-30
dc.description.abstractA model for the cathode catalyst layer (CL) is presented, which is validated with previous experimental data in terms of both performance and oxygen transport resistance. The model includes a 1D macroscopic description of proton, electron and oxygen transport across the CL thickness, which is locally coupled to a 1D microscopic model that describes oxygen transport toward Pt sites. Oxygen transport from the channel to the CL and ionic transport across the membrane are incorporated through integral boundary conditions. The model is complemented with data of effective transport and electrochemical properties extracted from multiple experimental works. The results show that the contribution of the thin ionomer film and Pt/ionomer interface increases with the inverse of the roughness factor. Whereas the contribution of the water film and the water/ionomer interface increases with the ratio between the geometric area and the surface area of active ionomer. Moreover, it is found that CLs diluted with bare carbon provide lower performance than non-diluted samples due to their lower electrochemical surface area and larger local oxygen transport resistance. Optimized design of non-diluted samples with a good distribution of the overall oxygen flux among Pt sites is critical to reduce mass transport losses at low Pt loading.en
dc.description.sponsorshipThis work was supported by the projects PID2019-106740RB-I00 and EIN2020-112247 (Spanish Agencia Estatal de Investigación) and the project PEM4ENERGY-CM-UC3M funded by the call "Programa de apoyo a la realización de proyectos interdisciplinares de I + D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019–2020" under the frame of the "Convenio Plurianual Comunidad de Madrid-Universidad Carlos III de Madrid".en
dc.description.statusPublicado
dc.format.extent16
dc.identifier.bibliographicCitationJournal of The Electrochemical Society, (2021), 168(12), 124514.en
dc.identifier.doihttps://doi.org/10.1149/1945-7111/ac4456
dc.identifier.issn0013-4651
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue12, 124514
dc.identifier.publicationlastpage16
dc.identifier.publicationtitleJOURNAL OF THE ELECTROCHEMICAL SOCIETYen
dc.identifier.publicationvolume168
dc.identifier.urihttps://hdl.handle.net/10016/35216
dc.identifier.uxxiAR/0000029286
dc.language.isoengen
dc.publisherIOP Scienceen
dc.relation.projectIDComunidad de Madrid. PEM4ENERGY-CM-UC3Mes
dc.relation.projectIDGobierno de España. PID2019-106740RB-I00es
dc.relation.projectIDGobierno de España. EIN2020-112247es
dc.rights© 2021 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limiteden
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Industriales
dc.subject.otherPt loadingen
dc.subject.otherOxygen transporten
dc.subject.otherCompositionen
dc.subject.otherCatalyst layeren
dc.subject.otherPolymer electrolyte membrane fuel cellsen
dc.titleModeling the Effect of Low Pt loading Cathode Catalyst Layer in Polymer Electrolyte Fuel Cells. Part I: Model Formulation and Validationen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
modeling_JES_2021.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format