Publication:
Solar simulator based on induction heating to characterize experimentally tubular solar central receivers

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería de Sistemas Energéticoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Dinámica de Estructuras Ligerases
dc.contributor.authorRodríguez Sánchez, María de los Reyes
dc.contributor.authorPueyo Balsells, Albert
dc.contributor.authorMontoya Sancha, Andrés
dc.contributor.authorArtero Guerrero, José Alfonso
dc.contributor.funderComunidad de Madrides
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.date.accessioned2023-09-27T13:37:24Z
dc.date.available2023-09-27T13:37:24Z
dc.date.issued2023-02-05
dc.description.abstractSolar receiver tubes in solar power tower plants are subjected to non-homogeneous heat flux and temperature that produce early failure derived from the thermal stress. To reduce these problems, the thermomechanical characterization of the receiver is required. However, there are limitations in the data acquisition during operation due to the extreme working conditions, the different scale lengths, and the disturbance of the normal operation, being not possible to determine experimentally the thermomechanical behaviour of this device or to validate specific models developed. In this work an experimental facility able to reproduce the operation conditions of solar receivers has been designed and tested. To obtain the non-homogenous heat flux an induction heating system has been used. The facility has also been equipping of sensors and cameras that allow to measure the temperature distribution, the displacement and the strain field in a tube stretch. It is obtained a circumferential variation of the temperature of 160 °C, and a tube displacement due to the bending produced by the temperature gradient in combination to the mechanical boundary conditions of 2.251 mm. The data obtained with the cameras have been checked with the displacement and temperature sensors, obtaining maximum differences of 3 %, it means 5 °C and 0.05 mm. Thus, it is possible to derivate the tube displacement to obtain the hoop and axial strain field. These results are the first step for the thermomechanical characterization of tubes with non-homogeneous temperature profiles in the three directions. The proposed solar simulator will allow the validation and development of thermomechanical models able to reproduce the operation conditions of the receiver with the final goal of improving the receiver design and operation.en
dc.description.sponsorshipThis research is partially funded by the Spanish government under the projects RTI2018-096664-B-C21 and RTI2018-096664-B-C22 (MICINN/FEDER, UE) and by the Madrid Government (Comunidad de Madrid) under the Multiannual Agreement with UC3M in the line of "Fostering Young Doctors Research" (RETOrenovable-CM-UC3M), and in the context of the V PRICIT (Regional Programme of Research and Technological Innovation). The authors want to thank the work of Prof. Jesús Pernas for the development of the original system of the Arduino board needed to do a proper acquisition of the 3D-DIC imagesen
dc.format.extent14
dc.identifier.bibliographicCitationRodríguez-Sánchez, Pueyo-Balsells, A., Montoya, A., & Artero-Guerrero, J. (2023). Solar simulator based on induction heating to characterize experimentally tubular solar central receivers. Applied Thermal Engineering, 220, 119781.en
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2022.119781
dc.identifier.issn1359-4311
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue119781
dc.identifier.publicationlastpage14
dc.identifier.publicationtitleApplied Thermal Engineeringen
dc.identifier.publicationvolume220
dc.identifier.urihttps://hdl.handle.net/10016/38455
dc.identifier.uxxiAR/0000032022
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. RTI2018-096664-B-C21es
dc.relation.projectIDGobierno de España. RTI2018-096664-B-C22es
dc.relation.projectIDComunidad de Madrid. RETOrenovable-CM-UC3Mes
dc.relation.projectIDAT-2022
dc.rights© 2022 The Authors.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaEnergías Renovableses
dc.subject.ecienciaFísicaes
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.ecienciaQuímicaes
dc.subject.otherSolar receiveren
dc.subject.otherSolar simulatoren
dc.subject.otherInfrared cameraen
dc.subject.otherTemperature fielden
dc.subject.otherDigital image correlationen
dc.subject.otherStrainsen
dc.titleSolar simulator based on induction heating to characterize experimentally tubular solar central receiversen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Solar_ATE_2023.pdf
Size:
17.31 MB
Format:
Adobe Portable Document Format