Publication:
3D numerical simulations and microstructural modeling of anisotropic and tension compression asymmetric ductile materials

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Nonlinear Solid Mechanicses
dc.contributor.authorHashem Sharifi, Sarvnaz
dc.contributor.authorHosseini, Navab
dc.contributor.authorVadillo, Guadalupe
dc.contributor.funderMinisterio de Ciencia e Innovación (España)es
dc.date.accessioned2023-03-29T08:04:30Z
dc.date.available2023-03-29T08:04:30Z
dc.date.issued2022-12-01
dc.description.abstractIn the present work, we have analyzed the effect of anisotropy on void growth and stress-strain behavior for materials that exhibit remarkable tension-compression asymmetry (i.e., zirconium alloys). For that purpose, we have performed finite element simulations using a cubic 3D cell with a spherical void inside and subjected to periodic boundary conditions. Nonlinear kinematic constraints are also imposed as boundary conditions in order to maintain the values of macroscopic ratios constant during the whole loading history of the cell and account for a general (3D) stress state. The behavior of the matrix material is described by the CPB06 anisotropic criterion developed by Cazacu et al. (2006). The numerical results are compared to those considering 3D homogeneous (without void) cell with the same initial porosity as the voided one and governed by the anisotropic porous yield criterion developed by Stewart and Cazacu (2011). To investigate the influence of prescribed stress, strength differential parameter and strain hardening exponent on stress-strain behavior and void growth in the non-homogeneous (with void) and the homogeneous (without void) cells, we have used several stress ratios, three strength differential parameters and three strain hardening exponents. Finite element results obtained from different stress ratios show the strength differential parameter significantly affect void growth in both homogeneous and non-homogeneous cells. Moreover, comparison of two cells proves that both stress-strain behavior and porosity evolution are in good qualitative agreement for all three values of strength differential parameter. In contrast, as the value of strain hardening exponent increases, the agreement between results obtained from homogeneous and non-homogeneous cells is worse. An heuristic extension of the Stewart and Cazacu (2011)s model is proposed in this work in an attempt to improve the accuracy of the modelen
dc.description.sponsorshipThe authors want to acknowledge the financial support provided by the Spanish Ministry of Science and Innovation under Project reference DPI2017-88608-P (Proyectos I + D Excelencia 2017).en
dc.description.statusPublicadoes
dc.format.extent19
dc.identifier.bibliographicCitationInternational Journal of Solids and Structures, (2022), v. 256, 111936, (19 p.).en
dc.identifier.doihttps://doi.org/10.1016/j.ijsolstr.2022.111936
dc.identifier.issn0020-7683
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue111936
dc.identifier.publicationlastpage19
dc.identifier.publicationtitleINTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURESen
dc.identifier.publicationvolume256
dc.identifier.urihttps://hdl.handle.net/10016/37001
dc.identifier.uxxiAR/0000032283
dc.language.isoengen
dc.publisherElsevier
dc.relation.projectIDGobierno de España. DPI2017-88608-Pes
dc.relation.projectIDAT-2022
dc.rights© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaMaterialeses
dc.subject.otherAnisotropyen
dc.subject.otherTension-compression asymmetryen
dc.subject.otherVoid growthen
dc.subject.otherUnit-cell calculationsen
dc.title3D numerical simulations and microstructural modeling of anisotropic and tension compression asymmetric ductile materialsen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
3d-numerical_IJSS_2022.pdf
Size:
1.63 MB
Format:
Adobe Portable Document Format