Publication:
Heat transfer enhancement in turbulent boundary layers with a pulsed slot jet in crossflow

dc.affiliation.dptoUC3M. Departamento de Ingeniería Aeroespaciales
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería Aeroespaciales
dc.contributor.authorCastellanos García de Blas, Rodrigo
dc.contributor.authorSalih, Gianfranco
dc.contributor.authorRaiola, Marco
dc.contributor.authorIaniro, Andrea
dc.contributor.authorDiscetti, Stefano
dc.contributor.funderAgencia Estatal de Investigación (España)es
dc.date.accessioned2023-07-03T08:04:26Z
dc.date.available2023-07-03T08:04:26Z
dc.date.issued2023-01-25
dc.description.abstractThe convective heat transfer enhancement in a turbulent boundary layer (TBL) employing a pulsed, slot jet in crossflow is investigated experimentally. A parametric study on actuation frequencies and duty cycles is performed. The actuator is a flush-mounted slot jet that injects fluid into a well-behaved zero-pressure-gradient TBL over a flat plate. A heated-thin-foil sensor measures the time-averaged convective heat transfer coefficient downstream of the actuator location and the flow field is characterised by means of Particle Image Velocimetry. The results show that both the jet penetration in the streamwise direction and the overall Nusselt number increase with increasing duty cycle. The frequency at which the Nusselt number is maximised is independent of the duty cycle. The flow topology is considerably altered by the jet pulsation. A wall-attached jet rises from the slot accompanied by a pair of counter-rotating vortices that promote flow entrainment and mixing. Eventually, a simplified model is proposed which decouples the effect of pulsation frequency and duty cycle in the overall heat transfer enhancement, with a good agreement with experimental data. The cost of actuation is also quantified in terms of the amount of injected fluid during the actuation, leading to conclude that the lowest duty cycle is the most efficient for heat transfer enhancement.en
dc.description.sponsorshipThe work has been supported by the project ARTURO, ref. PID2019-109717RB-I00/AEI/10.13039/501100011033, funded by the Spanish State Research Agency. Funding for APC: Universidad Carlos III de Madrid (Read & Publish Agreement CRUE-CSIC 2022). Paul Murphy is kindly acknowledged for his support during the experimental campaign.en
dc.format.extent14es
dc.identifier.bibliographicCitationCastellanos, R., Salih, G., Raiola, M., Ianiro, A., & Discetti, S. (2023). Heat transfer enhancement in turbulent boundary layers with a pulsed slot jet in crossflow. Applied Thermal Engineering, 219, 119595en
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2022.119595
dc.identifier.issn1359-4311
dc.identifier.publicationfirstpage1es
dc.identifier.publicationissue119595es
dc.identifier.publicationlastpage14es
dc.identifier.publicationtitleAPPLIED THERMAL ENGINEERINGes
dc.identifier.publicationvolume219, Part Cen
dc.identifier.urihttps://hdl.handle.net/10016/37711
dc.identifier.uxxiAR/0000032490
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. PID2019-109717RB-I00es
dc.relation.projectIDAT-2022
dc.rights© 2022 The Author(s)en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaFísicaes
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherBoundary layersen
dc.subject.otherConvective heat transfer enhancementen
dc.subject.otherCrossflow jeten
dc.subject.otherFlow controlen
dc.subject.otherPulsed flowen
dc.titleHeat transfer enhancement in turbulent boundary layers with a pulsed slot jet in crossflowen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
heat_ATE_2023.pdf
Size:
2.96 MB
Format:
Adobe Portable Document Format