Publication:
Exergy recovery from solar heated particles to supercritical CO2

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Tecnologías Apropiadas para el Desarrollo Sosteniblees
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Ingeniería de Sistemas Energéticoses
dc.contributor.authorHernández Jiménez, Fernando
dc.contributor.authorSoria Verdugo, Antonio
dc.contributor.authorAcosta Iborra, Antonio
dc.contributor.authorSantana Santana, Domingo José
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2021-04-29T08:23:32Z
dc.date.available2021-04-29T08:23:32Z
dc.date.issued2019-01-05
dc.description.abstractIn this work, the technical feasibility of a fluidized and a fixed bed heat exchanger in a concentrating solar power (CSP) tower for heat recovery applications is analysed using Two-Fluid Model simulations. The heat recovery process analysed in this work corresponds to the discharge of sensible heat from solid particles. In the cases studied, the fluidizing agent of the bed is carbon dioxide (CO2) in supercritical conditions and the particles, which constitute the bed material, are sensible heat storage material. CO2 is gaining attention in its application as a working fluid in thermodynamic cycles for power generation, especially in transcritical and supercritical conditions due to its high density and excellent heat transfer characteristics. Currently, research is focused on exploring the CO2 capabilities when used in combination with CSP technologies, together with systems that allow the storage and recovery of the solar thermal energy. Fixed or fluidized beds work as a direct contact heat exchanger between the particles and the working fluid that percolates through the bed material. Several bed configurations are presented to derive the optimal configuration of the bed that enhances the efficiency from both the energetic and the exergetic points of view. The results indicate that a fixed bed heat exchanger produces a maximum increase of availability in the CO2 flow during longer times than a fluidized bed heat exchanger. Therefore, to maximise the exergy recovery from solar heated particles to supercritical CO2 a fixed bed heat exchanger is more suitable than a fluidized bed heat exchanger.en
dc.format.extent13
dc.identifier.bibliographicCitationHernández-Jiménez, F., Soria-Verdugo, A., Acosta-Iborra, A. & Santana, D. (2019). Exergy recovery from solar heated particles to supercritical CO2. Applied Thermal Engineering, vol. 146, pp. 469–481.en
dc.identifier.doihttps://doi.org/10.1016/j.applthermaleng.2018.10.009
dc.identifier.issn1359-4311
dc.identifier.publicationfirstpage469
dc.identifier.publicationlastpage481
dc.identifier.publicationtitleApplied Thermal Engineeringen
dc.identifier.publicationvolume146
dc.identifier.urihttps://hdl.handle.net/10016/32506
dc.identifier.uxxiAR/0000022891
dc.language.isoeng
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. ENE2015-69486-Res
dc.rights© 2018 Elsevier Ltd.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen access
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaEnergías Renovableses
dc.subject.otherSupercritical carbon dioxideen
dc.subject.otherFluidized beden
dc.subject.otherFixed beden
dc.subject.otherHeat exchangeren
dc.subject.otherConcentrating solar poweren
dc.titleExergy recovery from solar heated particles to supercritical CO2en
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Exergy_ATE_2019_ps.pdf
Size:
9.7 MB
Format:
Adobe Portable Document Format