Compression Elastic Modulus of Neutral, Ionic, and Amphoteric Hydrogels Based on N-Vinylimidazole

Thumbnail Image
Publication date
Defense date
Journal Title
Journal ISSN
Volume Title
Wiley Periodicals, Inc.
Google Scholar
Research Projects
Organizational Units
Journal Issue
Several hydrogels of N-vinylimidazole and sodium styrenesulfonate have been prepared by radical cross-linking copolymerization in aqueous solution, using N,N′-methylene-bisacrylamide as crosslinker. Depending on composition, these hydrogels were neutral, amphoteric, cationic or anionic. Compression-strain measurements were performed on samples as-synthesized and swollen in deionized water or in acid aqueous solutions, with and without salt. It was thus found that the cross-linking densities determined by compression measurements on as-synthesized samples are in good accordance with those calculated by means of the model of polymer networks with pendant vinyl groups. A non-Gaussian parameter (β) was introduced to explain that the elastic moduli (G) of samples swollen at equilibrium are larger than predicted by the Gaussian model. The β values of the neutral or ionized systems increase with swelling and fall into a single curve, which denotes a common behavior. Swelling has two opposite effects on G; on the one hand G decreases because the polymer volume fraction diminish and the system shifts from the affine limit to the phantom one; on the other, β increases and contributes to increasing G. The balance of those two opposite effects determines the variation of G with swelling. The possible contribution of ionic crosslinks to ᶹₑ for the polyampholyte and for the polycation wearing divalent counteranions was discussed. A peculiar system is poly(sodium styrenesulfonate), whose cross-linking density is much lower than expected.
Compression, Crosslinking, Degree of crosslinking, Elastic modulus, Hydrogels, Ionic gels, Modulus, Networks, Polyelectrolytes
Bibliographic citation
Valencia, J., Baselga, J. & Piérola, I. F. (2009). Compression elastic modulus of neutral, ionic, and amphoteric hydrogels based on N-vinylimidazole. Journal of Polymer Science Part B: Polymer Physics, 47 (11), pp. 1078–1087.