Publication:
Nonlinear Analysis of PrandtlPlane Joined Wings: Effects of Anisotropy

Loading...
Thumbnail Image
Identifiers
Publication date
2014-04-22
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
American Institute of Aeronautics and Astronautics
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Structural geometrical nonlinearities strongly affect the response of joined wings: it has been shown that buckling evaluations using linear methods are unreliable, and only a fully nonlinear stability analysis can safely identify the unstable state. This work focuses on the understanding of the main physical mechanisms driving the wing system's response and the snap-buckling instability. Several counterintuitive effects typical of unconventional nonplanar wing systems are discussed and explained. In particular, an appropriate design of the joint-to-wing connection may reduce the amount of bending moment transferred, and this is shown to eventually improve the stability properties, although at price of a reduced stiffness. It is also demonstrated that the lower-to-upper-wing stiffness ratio and the torsional-bending coupling, due to both the geometrical layout and anisotropy of the composite laminates, present a major impact on the nonlinear response. The findings of this work could provide useful indications to develop effective aeroelastic reduced-order models tailored for airplane configurations experiencing important geometric nonlinearities such as PrandtlPlane, truss-braced and strut-braced wings, and sensorcraft.
Description
Keywords
Bibliographic citation
Cavallaro, R., Demasi, L and Pasariello, A. (2014). Nonlinear Analysis of PrandtlPlane Joined Wings: Effects of Anisotropy. AIAA Journal, 52(5), 964-98