Publication:
Numerical analysis of the autoignition of isolated wet ethanol droplets immersed in a hot and humid air atmosphere

dc.affiliation.dptoUC3M. Departamento de Ingeniería Térmica y de Fluidoses
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Mecánica de Fluidoses
dc.contributor.authorMillán Merino, Alejandro
dc.contributor.authorFernández Tarrazo, Eduardo Antonio
dc.contributor.authorSánchez Sanz, Mario
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-02-23T08:46:51Z
dc.date.available2023-04-01T23:00:05Z
dc.date.issued2021-04
dc.description.abstractResults of time-dependent, spherically symmetrical computations of the vaporization and combustion of ethanol and ethanol/water droplets are reported. Mixture-average transport was employed, along with a systematically reduced chemical-kinetic mechanism involving 15 overall steps among 17 chemical species, to speed the computations by a factor of about 100 over what would be required if full detailed chemistry had been used. Absorption of water from the gas surrounding the droplet and its diffusive transport within the liquid phase were taken into account, providing excellent agreement with previous experimental and computational results for the combustion of ethanol droplets in air. On the other hand, the assumption of rapid liquid-phase mixing produced very poor agreement when water condensation on the droplet surface or hydrous ethanol are considered. To characterize autoignition, we define the critical autoignition temperature Tc ∞ as the critical ambient temperature below which autoignition is not observed. Computations for autoignition of cold ethanol/water droplets in air showed that Tc ∞ decreases with increasing initial droplet diameters. In the range of parameters under consideration, ignition was found to take place always before complete vaporization of the droplet, and the ignition time was found to become longer with the increasing initial water content of the liquid ethanol droplet. On the contrary, addition of water vapor to the initial air atmosphere was found to shorten the ignition time, increasing ethanol vaporization rate as a consequence of the extra heat release associated with water absorption into the liquid.en
dc.description.sponsorshipThe authors want to express their gratitude to Professor Forman Williams in the conception and guidance of this work, in particular, and all the ongoing work on ethanol droplet vaporization and combustion. This work was supported by the projects ENE2015-65852-C2-1-R and PID2019-108592RB-C41 (MINECO/FEDER,UE).en
dc.format.extent11
dc.identifier.bibliographicCitationMillán-Merino, A., Fernández-Tarrazo, E. & Sánchez-Sanz, M. (2021). Numerical analysis of the autoignition of isolated wet ethanol droplets immersed in a hot and humid air atmosphere. Combustion and Flame, 226, 42–52.en
dc.identifier.doihttps://doi.org/10.1016/j.combustflame.2020.11.023
dc.identifier.issn0010-2180
dc.identifier.publicationfirstpage42
dc.identifier.publicationlastpage52
dc.identifier.publicationtitleCombustion and Flameen
dc.identifier.publicationvolume226
dc.identifier.urihttps://hdl.handle.net/10016/34208
dc.identifier.uxxiAR/0000028668
dc.language.isoengen
dc.publisherElsevieren
dc.relation.projectIDGobierno de España. ENE2015-65852-C2-1-Res
dc.relation.projectIDGobierno de España. PID2019-108592RB-C41es
dc.rights© 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherAuto-ignitionen
dc.subject.otherEthanol droplet combustionen
dc.subject.otherHumidityen
dc.subject.otherReduced chemistryen
dc.titleNumerical analysis of the autoignition of isolated wet ethanol droplets immersed in a hot and humid air atmosphereen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Numerical_CF_2021_ps.pdf
Size:
2.13 MB
Format:
Adobe Portable Document Format