Publication:
Assessing population-sampling strategies for reducing the COVID-19 incidence

dc.affiliation.dptoUC3M. Departamento de Informáticaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Arquitectura de Computadores, Comunicaciones y Sistemases
dc.contributor.authorGuzmán Merino, Miguel
dc.contributor.authorDurán, Christian
dc.contributor.authorMarinescu, María Cristina
dc.contributor.authorDelgado Sanz, Concepción
dc.contributor.authorGómez Barroso, Diana
dc.contributor.authorCarretero Pérez, Jesús
dc.contributor.authorSingh, David E.
dc.contributor.funderEuropean Commissionen
dc.contributor.funderMinisterio de Sanidad, Consumo y Bienestar Social (España)es
dc.date.accessioned2022-05-04T09:50:29Z
dc.date.available2022-05-04T09:50:29Z
dc.date.issued2021-12
dc.description.abstractAs long as critical levels of vaccination have not been reached to ensure heard immunity, and new SARS-CoV-2 strains are developing, the only realistic way to reduce the infection speed in a population is to track the infected individuals before they pass on the virus. Testing the population via sampling has shown good results in slowing the epidemic spread. Sampling can be implemented at different times during the epidemic and may be done either per individual or for combined groups of people at a time. The work we present here makes two main contributions. We first extend and refine our scalable agent-based COVID-19 simulator to incorporate an improved socio-demographic model which considers professions, as well as a more realistic population mixing model based on contact matrices per country. These extensions are necessary to develop and test various sampling strategies in a scenario including the 62 largest cities in Spain; this is our second contribution. As part of the evaluation, we also analyze the impact of different parameters, such as testing frequency, quarantine time, percentage of quarantine breakers, or group testing, on sampling efficacy. Our results show that the most effective strategies are pooling, rapid antigen test campaigns, and requiring negative testing for access to public areas. The effectiveness of all these strategies can be greatly increased by reducing the number of contacts for infected individual.en
dc.description.sponsorshipThis work has been supported by the Carlos III Institute of Health under the project grant 2020/00183/001, the project grant BCV-2021-1-0011, of the Spanish Supercomputing Network (RES) and the European Union’s Horizon 2020 JTI-EuroHPC research and innovation program under grant agreement No 956748. The role of all study sponsors was limited to financial support and did not imply participation of any kind in the study and collection, analysis, and interpretation of data, nor in the writing of the manuscript.en
dc.format.extent10
dc.identifier.bibliographicCitationGuzmán-Merino, M., Durán, C., Marinescu, M.-C., Delgado-Sanz, C., Gomez-Barroso, D., Carretero, J., & Singh, D. E. (2021). Assessing population-sampling strategies for reducing the COVID-19 incidence. In Computers in Biology and Medicine (Vol. 139, p. 104938). Elsevier BV.en
dc.identifier.doihttps://doi.org/10.1016/j.compbiomed.2021.104938
dc.identifier.issn0010-4825
dc.identifier.publicationfirstpage104938
dc.identifier.publicationlastpage104948
dc.identifier.publicationtitleCOMPUTERS IN BIOLOGY AND MEDICINEen
dc.identifier.publicationvolume139
dc.identifier.urihttps://hdl.handle.net/10016/34687
dc.identifier.uxxiAR/0000030502
dc.language.isoengen
dc.publisherELSEVIER BVen
dc.relation.projectIDGobierno de España. COV20/00935es
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/956748en
dc.rights© 2021 The Authors.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaBiología y Biomedicinaes
dc.subject.ecienciaInformáticaes
dc.subject.otherAgent-based simulationen
dc.subject.otherContact matricesen
dc.subject.otherSampling strategiesen
dc.subject.otherSars-cov-2(covid-19)en
dc.subject.otherSocial modelen
dc.titleAssessing population-sampling strategies for reducing the COVID-19 incidenceen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Assessing_CBM_2021.pdf
Size:
2.16 MB
Format:
Adobe Portable Document Format