Publication:
Non-linear dynamics analysis of resting tremor for demand-driven deep brain stimulation

Loading...
Thumbnail Image
Identifiers
Publication date
2019-05-31
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Parkinson's Disease (PD) is currently the second most common neurodegenerative disease. One of the most characteristic symptoms of PD is resting tremor. Local Field Potentials (LFPs) have been widely studied to investigate deviations from the typical patterns of healthy brain activity. However, the inherent dynamics of the Sub-Thalamic Nucleus (STN) LFPs and their spatiotemporal dynamics have not been well characterized. In this work, we study the non-linear dynamical behaviour of STN-LFPs of Parkinsonian patients using epsilon-recurrence networks. RNs are a non-linear analysis tool that encodes the geometric information of the underlying system, which can be characterised (for example, using graph theoretical measures) to extract information on the geometric properties of the attractor. Results show that the activity of the STN becomes more non-linear during the tremor episodes and that epsilon-recurrence network analysis is a suitable method to distinguish the transitions between movement conditions, anticipating the onset of the tremor, with the potential for application in a demand-driven deep brain stimulation system.
Description
This article belongs to the Special Issue Signal Processing for Intelligent Sensor Systems
Keywords
Recurrence networks (RNs), Support vector machine (SVM), Deep brain stimulation (DBS), Parkinson’s disease (PD), Local field potentials (LFPs), Nonlinear dynamics
Bibliographic citation
Camara, C., Subramaniyam, N. P., Warwick, K., Parkkonen, L., Aziz, T. y Pereda, E. (2019). Non-Linear Dynamical Analysis of Resting Tremor for Demand-Driven Deep Brain Stimulation. Sensors, 19(11), 2507.