Publication:
Analysis, design, and implementation of the AFZ converter applied to photovoltaic systems

dc.affiliation.dptoUC3M. Departamento de Tecnología Electrónicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Sistemas Electrónicos de Potencia (GSEP)es
dc.contributor.authorLópez del Moral Hernández, David
dc.contributor.authorBarrado Bautista, Andrés
dc.contributor.authorSanz García, Clara Marina
dc.contributor.authorLázaro Blanco, Antonio
dc.contributor.authorZumel Vaquero, Pablo
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2022-07-27T09:44:21Z
dc.date.available2022-07-27T09:44:21Z
dc.date.issued2021-02
dc.description.abstractGrid-tied photovoltaic (PV) installations with Distributed Maximum Power Point Tracking (DMPPT) architectures include a DC-DC Module Integrated Converter (MIC) for managing each PV panel, isolating it from the others, reducing the mismatching effect and maximizing the harvested power. In this paper, the Autotransformer Forward converter with type-Zeta resonant reset (AFZ) is proposed as a DMPPT architecture’s MIC candidate. The main characteristics of the AFZ converter are the high versatility due to its voltage step-up and step-down capability; the use of an optimized autotransformer with only two windings, reducing the complexity and power losses of this component; the good dynamic performances, like the Forward converter ones; the low number of components and the simplicity and high feasibility associated to the use of just one active switch. Besides, soft switching transitions are achieved thanks to the autotransformer type-Zeta resonant reset. The steady-state theoretical analysis, considering the effect of the autotransformer leakage inductance, is presented. The converter is also studied in the frequency domain, obtaining the small-signal transfer functions. A design procedure based on the requirements of a 100 kW grid-tied photovoltaic installation is described, yielding in a 225 W prototype with efficiencies up to 95.6 %. Experimental results validate the theoretical analysis.en
dc.description.sponsorshipThis work was supported in part by the Spanish Ministry of Economy and Competitiveness and FEDER funds through the research project “Storage and Energy Management for Hybrid Electric Vehicles based on Fuel Cell, Battery and Supercapacitors” ELECTRICAR-AG under Grant DPI2014-53685-C2-1-R, in part by the research project CONEXPOT under Grant DPI2017-84572-C2-2-R, and in part by the research project EPIIOT under Grant DPI2017-88062-R.en
dc.format.extent17
dc.identifier.bibliographicCitationLopez del Moral, D., Barrado, A., Sanz, M., Lazaro, A., & Zumel, P. (2021). Analysis, Design, and Implementation of the AFZ Converter Applied to Photovoltaic Systems. In IEEE Transactions on Power Electronics, 36(2), 1883-1900en
dc.identifier.doihttps://doi.org/10.1109/TPEL.2020.3010152
dc.identifier.issn0885-8993
dc.identifier.publicationfirstpage1883
dc.identifier.publicationissue2
dc.identifier.publicationlastpage1900
dc.identifier.publicationtitleIEEE TRANSACTIONS ON POWER ELECTRONICSen
dc.identifier.publicationvolume36
dc.identifier.urihttps://hdl.handle.net/10016/35533
dc.identifier.uxxiAR/0000027208
dc.language.isoengen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en
dc.relation.projectIDGobierno de España. DPI2014-53685-C2-1-Res
dc.relation.projectIDGobierno de España. DPI2017-84572-C2-2-Res
dc.relation.projectIDGobierno de España. DPI2017-88062-Res
dc.rights© 2020 IEEEen
dc.rights.accessRightsopen accessen
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.otherMicrowave integrated circuitsen
dc.subject.otherMagnetic resonanceen
dc.subject.otherSwitchesen
dc.subject.otherInductanceen
dc.subject.otherTopologyen
dc.subject.otherCapacitorsen
dc.subject.otherPower electronicsen
dc.titleAnalysis, design, and implementation of the AFZ converter applied to photovoltaic systemsen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
analysis_IEEE_2021_ps.pdf
Size:
2.53 MB
Format:
Adobe Portable Document Format