Publication:
Chemical regeneration of thermally conditioned basalt fibres

dc.affiliation.dptoUC3M. Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Químicaes
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Síntesis y Procesado de Materialeses
dc.contributor.authorLilli, Matteo
dc.contributor.authorSarasini, Fabrizio
dc.contributor.authorDi Fausto, Lorenzo
dc.contributor.authorGonzález, Carlos
dc.contributor.authorFernández Gorgojo, Andrea
dc.contributor.authorLópes, Claudio Saúl
dc.contributor.authorTirillò, Jacopo
dc.date.accessioned2023-07-20T07:15:41Z
dc.date.available2023-07-20T07:15:41Z
dc.date.issued2020-10-01
dc.descriptionThis article belongs to the Special Issue Surface Modification of Glass Fibersen
dc.description.abstractThe disposal of fibre reinforced composite materials is a problem widely debated in the literature. This work explores the ability to restore the mechanical properties of thermally conditioned basalt fibres through chemical treatments. Inorganic acid (HF) and alkaline (NaOH) treatments proved to be effective in regenerating the mechanical strength of recycled basalt fibres, with up to 94% recovery of the strength on treatment with NaOH. In particular, HF treatment proved to be less effective compared to NaOH, therefore pointing towards a more environmentally sustainable approach considering the disposal issues linked to the use of HF. Moreover, the strength regeneration was found to be dependent on the level of temperature experienced during the thermal treatment process, with decreasing effectiveness as a function of increasing temperature. SEM analysis of the fibres' lateral surfaces suggests that surface defects removal induced by the etching reaction is the mechanism controlling recovery of fibre mechanical properties. In addition, studies on the fracture toughness of the regenerated single fibres were carried out, using focussed ion beam (FIB) milling technique, to investigate whether any structural change in the bulk fibre occurred after thermal exposure and chemical regeneration. A significant increase in the fracture toughness for the regenerated fibres, in comparison with the as-received and heat-treated basalt ones, was measured.en
dc.format.extent12
dc.identifier.bibliographicCitationLilli, M., Sarasini, F., Di Fausto, L., González, C., Fernández, A. G., Lopes, C., & Tirillò, J. (2020). Chemical regeneration of thermally conditioned basalt fibres. Applied Sciences, 10(19), 6674.en
dc.identifier.doihttps://doi.org/10.3390/APP10196674
dc.identifier.issn2076-3417
dc.identifier.publicationfirstpage1
dc.identifier.publicationissue19, 6674
dc.identifier.publicationlastpage12
dc.identifier.publicationtitleApplied Sciencesen
dc.identifier.publicationvolume10
dc.identifier.urihttps://hdl.handle.net/10016/37906
dc.identifier.uxxiAR/0000027595
dc.language.isoeng
dc.publisherMDPI
dc.rights© 2020 by the authors.en
dc.rightsAtribución 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.subject.ecienciaIngeniería Industriales
dc.subject.ecienciaMaterialeses
dc.subject.ecienciaQuímicaes
dc.subject.otherBasalt fibresen
dc.subject.otherFracture behaviouren
dc.subject.otherFracture mechanicsen
dc.subject.otherHeat treatmenten
dc.subject.otherMechanical propertiesen
dc.subject.otherRecyclingen
dc.titleChemical regeneration of thermally conditioned basalt fibresen
dc.typeresearch article*
dc.type.hasVersionVoR*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chemical_AS_2020.pdf
Size:
3.48 MB
Format:
Adobe Portable Document Format