Publication:
Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects

Loading...
Thumbnail Image
Identifiers
Publication date
2012-06-30
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
Laser peening at a range of power densities has been applied to 2 mm-thick sheets of 2024 T351 aluminium. The induced residual stress field was measured using incremental hole drilling and synchrotron X-ray diffraction techniques. Fatigue samples were subjected to identical laser peening treatments followed by scribing at the peen location to introduce stress concentrations, after which they were fatigue tested. The residual stresses were found to be non-biaxial: orthogonal to the peen line they were tensile at the surface, moving into the desired compression with increased depth. Regions of peen spot overlap were associated with large compression strains; the centre of the peen spot remaining tensile. Fatigue lives showed moderate improvement over the life of unpeened samples for 50 mum deep scribes, and slight improvement for samples with 150 mum scribes. Use of the residual stress intensity Kresid approach to calculate fatigue life improvement arising from peening was unsuccessful at predicting the relative effects of the different peening treatments. Possible reasons for this are explored.
Description
Keywords
Laser peening, Aluminium sheet, Fatigue, Residual stresses, Crack growth
Bibliographic citation
Dorman, M., Toparli, M.B., Smyth, N., Cini, A., Fitzpatrick, M., Irving, P. E.(2012). Effect of laser shock peening on residual stress and fatigue life of clad 2024 aluminium sheet containing scribe defects. Materials Science and Engineering: A (548), June (142-151). https://doi.org/10.1016/j.msea.2012.04.002