Publication:
Canonical correlation analysis of high-dimensional data with very small sample support

Loading...
Thumbnail Image
Identifiers
Publication date
2016-11-01
Defense date
Advisors
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This paper is concerned with the analysis of correlation between two high-dimensional data sets when there are only few correlated signal components but the number of samples is very small, possibly much smaller than the dimensions of the data. In such a scenario, a principal component analysis (PCA) rank-reduction preprocessing step is commonly performed before applying canonical correlation analysis (CCA). We present simple, yet very effective, approaches to the joint model-order selection of the number of dimensions that should be retained through the PCA step and the number of correlated signals. These approaches are based on reduced-rank versions of the Bartlett-Lawley hypothesis test and the minimum description length information-theoretic criterion. Simulation results show that the techniques perform well for very small sample sizes even in colored noise. (C) 2016 Elsevier B.V. All rights reserved.
Description
Keywords
Bartlett-Lawley statistic, Canonical correlation analysis, Model-order selection, Principal component analysis, Small sample support, Information-theoretic criteria, Signals, Noise, Number, Components
Bibliographic citation
Song, Y., Schreier, P. J., Ramírez, D., & Hasija, T. (2016). Canonical correlation analysis of high-dimensional data with very small sample support. Signal Processing, 128, 449-458