Publication:
Nonlinear resonances of an idealized saccular aneurysm

dc.affiliation.dptoUC3M. Departamento de Mecánica de Medios Continuos y Teoría de Estructurases
dc.affiliation.grupoinvUC3M. Grupo de Investigación: Nonlinear Solid Mechanicses
dc.contributor.authorAranda Iglesias, Francisco Damián
dc.contributor.authorRamón Lozano, Clara
dc.contributor.authorRodríguez-Martínez, José A.
dc.contributor.funderMinisterio de Economía y Competitividad (España)es
dc.date.accessioned2020-01-09T10:06:44Z
dc.date.available2020-01-09T10:06:44Z
dc.date.issued2017-12-01
dc.description.abstractThis paper investigates the occurrence of dynamic instabilities in idealized intracranial saccular aneurysms subjected to pulsatile blood flow and surrounded by cerebral spinal fluid. The problem has been approached extending the original 2D model of Shah and Humphrey (1999) to a 3D framework. The justification for using a 3D formulation arises from the works of Suzuki and Ohara (1978), MacDonald et al. (2000) and Costalat et al. (2011) who showed experimental evidences of intracranial aneurysms with a ratio between wall thickness and inner radius larger that 0.1. Two different material models have been used to describe the mechanical behaviour of the aneurysmal wall: Neo-Hookean and Mooney-Rivlin. To the authors' knowledge, for the first time in literature, the dynamic response of the aneurysm has been analysed using complete nonlinear resonance diagrams that have been obtained from a numerical procedure specifically designed for that purpose. Our numerical results show that, for a wide range of wall thicknesses and both constitutive models considered, the saccular aneurysms are dynamically stable within the range of frequencies associated to the normal heart rates, which confirms previous results of Shah and Humphrey (1999). On the other hand, our results also show that the geometric and material nonlinearities of the problem could bring closer than expected the resonance frequencies of the aneurysm to the frequencies of the pulsatile blood flow.en
dc.description.sponsorshipThe authors are indebted to the Spanish Ministry of Economy and Competitiveness (Project EUIN2015-62556) for the financial support received which allowed conducting part of this work.en
dc.format.extent12
dc.identifier.bibliographicCitationInternational Journal of Engineering Science, vol. 121, pp. 154-166.en
dc.identifier.doihttps://doi.org/10.1016/j.ijengsci.2017.09.007
dc.identifier.issn0020-7225
dc.identifier.publicationfirstpage154
dc.identifier.publicationlastpage166
dc.identifier.publicationtitleInternational Journal of Engineering Scienceen
dc.identifier.publicationvolume121
dc.identifier.urihttps://hdl.handle.net/10016/29418
dc.identifier.uxxiAR/0000020655
dc.language.isoengen
dc.publisherElsevier
dc.relation.projectIDGobierno de España. EUIN2015-62556es
dc.rights© 2017 Elsevier Ltd. All rights reserved.en
dc.rightsAtribución-NoComercial-SinDerivadas 3.0 España*
dc.rights.accessRightsopen accessen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.subject.ecienciaIngeniería Mecánicaes
dc.subject.ecienciaMedicinaes
dc.subject.otherIntracranial aneurysmen
dc.subject.otherFinite elasticityen
dc.subject.otherConstitutive modelen
dc.subject.otherNonlinear resonancesen
dc.titleNonlinear resonances of an idealized saccular aneurysmen
dc.typeresearch article*
dc.type.hasVersionAM*
dspace.entity.typePublication
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Resonances_IJES_2017.pdf
Size:
4.25 MB
Format:
Adobe Portable Document Format
Description: