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Abstract

We propose a model where wholesale electricity prices are explained by

two state variables: demand and capacity. We derive analytical expressions to

price forward contracts and to calculate the forward premium. We apply our

model to the PJM, England and Wales, and Nord Pool markets. Our empirical

findings indicate that volatility of demand is seasonal and that the market price

of demand risk is also seasonal and positive, both of which exert an upward

(seasonal) pressure on the price of forward contracts. We assume that both

volatility of capacity and the market price of capacity risk are constant and

find that, depending on the market and period under study, it could either

exert an upward or downward pressure on forward prices. In all markets we

find that the forward premium exhibits a seasonal pattern. During the months

of high volatility of demand, forward contracts trade at a premium. During

months of low volatility of demand, forwards can either trade at a relatively

small premium or, even in some cases, at a discount, i.e. they exhibit a negative

forward premium.

Keywords: power prices, demand, capacity, forward premium, forward bias,

market price of capacity risk, market price of demand risk, PJM, England and

Wales, Nord Pool
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1 Introduction

Although electricity is considered to be a commodity, its price behavior is strikingly

different from that of any other commodity or more generally from that of any other

asset. The most conspicuous features of its price dynamics are the presence of a

seasonal trend and short-lived deviations or spikes with strong mean reversion, a

unique characteristic of the power market. The latter behavior is a consequence of

the complex dynamics of, and the interaction between, the demand and supply of a

commodity which is either impossible or un-economical to store.

This inability to store power is perhaps the pivotal reason for the extreme be-

havior of electricity’s price dynamics. Unlike most commodities, once electricity is

produced it must be consumed. When storing a commodity is feasible, mismatches

between demand and supply can be partially met by either storing the good or by

drawing from inventories. In this way, storage capabilities act as a buffer and have the

effect of smoothing out price deviations from their expected seasonal trend. A clear

example is gas, where storage levels follow a seasonal profile that reflects net demand

or supply. Where demand outstrips supply, usually between the months of Decem-

ber through April, inventories are depleted; where supply exceeds demand storage

facilities are replenished. However, contrary to the way inventories act against sharp

price deviations in most commodities, the absence of storage in electricity markets

amplifies the effects produced by mismatches between supply and demand.

Moreover, the adverse consequences of not being able to store power are exac-

erbated by the composition of the generation park of every market. There are two

sides to this problem that must be considered. First, in most markets around the

world, the vast majority of generation capacity is concentrated in a small number of
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companies that own generation plants. Therefore the actions or performance of just

one player in the market may have an impact on equilibrium prices. Furthermore, due

to the economies of scale in this market, investments come in large tranches, hence

installed capacity increases in steps rather than in a gradual manner. The immediate

implication is that power supply takes the form of a ‘supply stack’ since different

plants come on line at different prices which, makes equilibrium prices very unstable

around these step changes.

The second aspect that must be contemplated is that every generation park con-

sists of a heterogeneous ensemble of plants where the main characteristic that dif-

ferentiates them is the source employed to produce power and their cost function

(marginal costs). For instance, the Scandinavian power market is dominated by hy-

dro plants, but most of the time the marginal plants that determine equilibrium prices

are coal, gas or oil-based. Similarly, in the England and Wales (E&W) market gas and

coal plants, representing around 60% of generation capacity, are usually the marginal

entrants that set prices.

Nevertheless, the peculiarities of the supply side are not solely responsible for

the exceptional behavior of power prices. Aggregate demand is highly inelastic and

mainly dependent on weather and economic activity. Short-term unexpected demand

variations are normally attributed to changes in weather, but on a longer time scale,

the different seasons of the year, together with the economic cycle, also affect the

seasonal trend that underlies aggregate demand.

The main contribution of this article is to introduce a general framework that

analyzes how demand and capacity determine wholesale electricity prices. We propose

a flexible model that allows different specifications both for the modeling of the state

variables (demand and capacity) and for the relationship between state variables and
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electricity prices. Moreover, the specification of our model allows us to obtain closed-

form solutions for forward prices which enables us to directly examine the dynamics

of the forward premium. Finally, we exemplify the use of our model by analyzing the

markets of PJM, E&W and Nord Pool.

The rest of this article is structured as follows. In Section 2 we present an overview

of previous work on the valuation of electricity derivatives. Section 3 analyzes the

characteristics of the supply and demand of electricity. In Section 4 we propose the

model for the electricity spot price as a function of demand and generation capacity.

Further, in Section 5 we present the model under the risk-adjusted probability mea-

sure, derive valuation formulæ for forward contracts and discuss the forward premium.

Finally, Section 6 concludes.

2 Models for the valuation of electricity deriva-

tives

Modeling power prices, and other financial instruments related to this market, is quite

recent in the academic literature. For instance, although the subject matter was not

the modeling of power prices but storable commodities, the work of Schwartz (1997)

and Schwartz and Smith (2000) served as a platform for a number of articles that

dealt with the valuation of electricity derivatives by proposing no-arbitrage models

for the dynamics of wholesale electricity prices. For example, in the work of Lućıa

and Schwartz (2002) and Villaplana (2005) power prices are modeled according to

non-observable state variables that account for the short-term movements and long-

term trends in electricity prices. In particular, the former looks into the valuation of
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electricity futures contracts traded in the Nord Pool (Scandinavian market), and the

latter introduces the possibility of jumps in the short-term process of the Schwartz and

Smith (2000) model, derives valuation formulæ for forward contracts and undertakes

an empirical analysis of the PJM market. Similarly, Cartea and Figueroa (2005)

present a mean-reverting jump-diffusion model of wholesale electricity prices and

derive closed-form formulæ for forward contracts and apply the model to the E&W

power market. Finally, Geman and Roncoroni (2006) focuses on the modeling of spot

prices and apply their model to the PJM, ECAR and COB markets.

Alternatives to no-arbitrage models are the so-called equilibrium and hybrid mod-

els which, given the particular characteristics of electricity, explain price formation

based on state variables that are mainly associated to supply and demand. This line

of research has been pursued in Geman and Eydeland (1998), Pirrong and Jermakyan

(1999), Pirrong and Jermakyan (2000), Bessembinder and Lemmon (2002), Longstaff

and Wang (2004), Barlow (2002), Skantze, Gubina, and Ilic (2000) and Skantze and

Ilic (2001) among others.

For example, Pirrong and Jermakyan (1999) and Pirrong and Jermakyan (2000)

propose to model the equilibrium price as a function of two state variables, electricity

demand and the futures price of the marginal fuel. Moreover, the authors consider

that electricity prices should be an increasing and convex function of demand.

Bessembinder and Lemmon (2002) adopted an equilibrium perspective and ex-

plicitly modeled the economic determinants of the forward market. In their model,

producers face marginal production costs that may increase steeply with output and

aggregate demand is exogenous and stochastic. They show that the forward premium,

defined as the forward minus the expected spot price, is positively (resp. negatively)

related to the skewness (resp. variance) of the spot price. One of the key insights
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is that the risk of price spikes, due to sudden positive shocks in power demand, can

have important effects on the size and the sign of the forward premium. In their

equilibrium model, the resulting expression for spot prices is given by the following

expression: P = a (D/N)k−1, where P is the electricity spot price, D is the demand

level, N number of (symmetric) producers (generators), and a and k > 2 are con-

stants. Note that assuming N constant is equivalent to assuming that generation

capacity is also known and fixed.

Longstaff and Wang (2004) focus on the question of how electricity forward prices

are related to expected spot prices. Their goal is to provide an empirical analysis

of the theoretical predictions presented in Bessembinder and Lemmon (2002). They

find a significant forward premium in the PJM market which they consider as being

the result of “the rationality and risk aversion of economic agents participating in the

market”. They point out that “total demand approaching or exceeding the physical

limits of power generation” is an important economic risk (related also to quantity

risk) and “the risk of price spikes as demand approaches system capacity is an extreme

type of risk which may have important implications for the relation between spot and

forward prices”.

Therefore in those situations where the demand level is near the maximum ca-

pacity of the system, the behavior of electricity prices can be quite abrupt, since

electricity must be generated by plants with higher marginal costs (convexity of the

supply function). Furthermore, although Longstaff and Wang (2004) try to establish

a relationship between the forward premium and the difference between maximum ca-

pacity and expected demand, they must assume (due to lack of data) that generating

capacity is constant.

Furthermore, Barlow (2002), Skantze, Gubina, and Ilic (2000) and Skantze and
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Ilic (2001) have in common the fact that they impose a functional form for the re-

lationship between price and two state variables: demand and a non-specified vari-

able related to the supply side. For instance, Barlow (2002) proposed a non-linear

Ornstein-Uhlenbeck process for the description of observed electricity prices. The

author considered demand as the relevant state variable and modeled it as a mean-

reverting process incorporating a non-constant mean given by a deterministic sea-

sonal function. Skantze, Gubina, and Ilic (2000) and Skantze and Ilic (2001) impose

an exponential functional form between electricity spot prices and the state variables

demand and a non-observable residual variable which is related to supply conditions.

In this article we model equilibrium electricity prices as a function of two ob-

servable state variables: demand and generation capacity. In this way we extend

the work of Pirrong and Jermakyan (1999), Barlow (2002) and Bessembinder and

Lemmon (2002) by considering the capacity of a system to generate electricity at

any point in time as a random variable, in other words, capacity follows a stochastic

process. Moreover, based on empirical observations and in line with Bessembinder

and Lemmon (2002), we assume that electricity prices are increasing in demand and

decreasing in capacity. Yet we propose a model flexible enough so that forward prices,

a key building block in power markets, can be priced in closed-form, which also allows

us to gain further insights into the characteristics of power markets by examining the

forward premium for which we also obtain an analytical expression.
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3 Demand and effective generation capacity

3.1 Demand

As mentioned above there are two key drivers that affect power demand: economic

activity and weather conditions. On a broad level, the seasonal behavior of these

drivers is passed onto the dynamics of power prices. For instance, the relationship

between economic activity and electricity demand makes load (i.e. out-turn or realized

demand) a seasonal variable too. Similarly, on short-time scales, electricity demand

exhibits intra-day and intra-week seasonality with clearly discernible patterns. Within

working days, for example, one can identify high demand (mornings and evenings) and

low demand hours (generally from midnight to 6:00 am). And likewise, throughout

the week, we may also observe that demand is higher during weekdays and lower

during weekends and public holidays.

Weather, on the other hand, also influences electricity demand; temperature being

one of the most influential factors. Extreme temperatures, high or low, induce a

considerable use of air-conditioners or heating devices. As with cycles in economic

activity, the marked seasonal patterns such as winters and summers are generally

reflected in the seasonal levels of electricity prices. However, on short-time scales,

electricity demand usually depends non-linearly on temperature (see Pardo, Meneu,

and Valor (2002)) which makes volatility of demand very sensitive to short-term

weather variations; an effect which is exacerbated during periods of already high

demand.

Therefore electricity demand may be modeled as a mean-reverting process, where

the mean is non-constant (seasonal) and with periods of high and low volatility. In

order to take into account these features, we introduce several components in our
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model for the evolution demand. We assume

Dt = gD(t) + χD
t (1)

dχD
t = −kDχD

t dt + σD(t)dZD
t (2)

where demand Dt has a non-constant, deterministic trend given by the function gD(t),

and χD
t is a mean-reverting process, with seasonal volatility captured by the term

σD(t) and dZD
t are the increments of a standard Brownian motion.1

From Figures 1, 2 and 3 it is straightforward to observe that the behavior of

demand is different in each market.2 These differences are important in order to

understand the behavior of spot prices, forward prices and forward premiums. For

example, it is important to emphasize that demand levels in the PJM market exhibits

the largest volatility and that the Nord Pool shows the largest kurtosis (see Table 1).

Insert table 1 about here

We employ daily demand data to estimate a discretized version of the demand

model, (1) and (2), and obtain the parameter estimates by Maximum Likelihood.3

1We note that a simple extension to model (1), (2) would consist of adding another factor to
capture long-term shocks in the following way

Dt = gD(t) + χD
t + ξt

dχD
t = −kDχDdt + σD(t)dZD

t

dξ = µξdt + σξdZ
ξ
t

where µξ and σξ are constant and dZ
ξ
t are the increments of a standard Brownian motion. With

this specification the long-term equilibrium level gD(t) + ξt is not deterministic.
2In each market we use the day-ahead demand.
3Since we are dealing with daily data, the discretization error is negligible, Melino (1994). The

models have been estimated using the BHHH algorithm.
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The discretized version of the demand model is given by

Dt = gD(t) + χD
t (4)

χD
t = BχD

t−1 + σD,tεt. (5)

Here (5) is an autoregressive form of (2) where B = 1 − kD, εt ∼ N(0, 1) and

σD,t = σD
1 wintert + σD

2 springt + σD
3 fallt + σD

4 summert (6)

is designed to capture the seasonal component of the time-dependent volatility by

including quarterly dummies: fallt takes the value 1 if the observation is on September,

October or November and zero the rest of the months; springt takes the value of 1

if the observation is March, April and May or zero in the rest of months; summert

takes the value 1 if the observation is in June, July or August and zero the rest of

the months; and wintert is similarly defined. Finally, depending on the market, the

seasonal component is given by

gD(t) = B0 +

12
∑

j=2

MjD
M
j +

y
∑

j=2

YjD
Y
j (7)

or

gD(t) = B0 +
12

∑

j=2

MjD
M
j + Ct. (8)

Here DM
j are the monthly dummies that take into account the existence of discrete

changes in the annual mean level of the demand series; DY
j are the yearly dummies

(y varies depending on the market); Mj and Yj are parameters; and C is a parameter

responsible for the linear trend in (8).
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Table 2 shows parameter estimates for the demand model (4)-(6) applied to three

markets: PJM, E&W and Nord Pool. Moreover, we used (7) for PJM and Nord

Pool and (8) for E&W. For comparison purposes we have estimated two different

specifications for the volatility of demand in each market. The first specification

assumes the volatility is constant σD(t) = σD
const (results shown in columns with

heading ‘Const Vol’) and the other assumes that volatility is seasonal as described

in (6) (results shown under heading ‘Seas Vol’). From the table we see that in all

markets, the quarterly dummies of the seasonal volatility specification are significant,

moreover, according to the Schwarz Criterion, the seasonal volatility model is the

preferred one. Finally, we have computed a LR test to check the difference between

the restricted model (constant volatility model) and the unrestricted one (seasonal

volatility specification), where we find that in the three markets the null hypothesis

is clearly rejected at 1% significant levels.

Insert Table 2 here

It is interesting to mention the relationship between the level gD(t) of the demand

series and the seasonal pattern in the volatility of the series. For example, Figure

2 shows demand in E&W over the period March 2001 to March 2006. Here we

can observe that periods of high demand, i.e. high levels in gD(t), occur during the

months of August through December. At the same time we observe from Table 2 that

volatility σD(t) is also higher during the summer and fall seasons (i.e. June through

November) coinciding with the times when gD(t) is already high. This feature, which

is broadly present across the three different markets under study, will have interesting

consequences. First, a straightforward effect is that across seasons when demand levels

and volatility of demand are high, wholesale power prices will also, ceteris paribus,
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be high and volatile. Second, we can expect forward prices and the forward premium

to reflect a seasonal pattern as a result of seasonality in the volatility of demand. We

will me more precise about this last point in Section 4 when we present a model for

power prices and in Section 5 where we study the forward premium.

Insert Figure 1 here

Insert Figure 2 here

Insert Figure 3 here

3.2 Generation capacity

The inclusion of demand as a state variable is as important as the inclusion of ef-

fective generation capacity to explain the dynamics of spot or forward prices. The

former accounts for the dynamics of aggregate demand and the latter accounts for the

dynamics of the supply stack, yet it is the interaction between the two at every point

in time (for example half-hour slots) what determines equilibrium market prices.

There are different definitions of capacity. One working definition of capacity is the

maximum level of energy that can be produced at a point in time. In an ideal situation

this figure should incorporate all generation that can be made available should the

system operator call upon it. Hence, planned maintenance or other circumstances

that reduce or increase the ability to generate power should already be accounted for

when capacity is reported (see Cartea, Figueroa, and Geman (2007)).

One level of difficulty we face stems from the fact that not all markets are the

same and that publicly available information also differs across them. For example,

in the Nord Pool market it is relatively straightforward to obtain figures for reservoir
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levels, but capacity derived from other generation sources is not readily available.

Therefore, when looking at the Scandinavian market we will use hydro reservoir as

a proxy for total capacity. In the E&W market, information on capacity (surplus) is

made public by the National Grid Company (NGC). Finally, for the PJM market we

use installed capacity.4

Figures 7, 8 and 9 show the proxies we use for generation capacity for the three

markets we study. For instance, Figure 7 shows installed capacity in the PJM market

over the period January 1999 through August 2006; Figure 8 shows E&W daily

observations of capacity surplus over the period March 2001 through March 2006;

and Figure 9 shows reservoir levels for the Nord Pool over the period January 1999

through December 2006. Although the information we have relating to capacity

differs across markets, it is clear from the figures that capacity cannot be considered

a deterministic variable, instead, capacity must be considered as a state variable that

exhibits two main characteristics. First, a predictable component since some of the

fluctuations on generation capacity may be known in advance by market participants

(for instance because of the existence of seasonality and/or planned outages). Second,

short-lived deviations that are considered random shocks to the expected available

capacity in the market.

Insert Figure 7 here

Insert Figure 8 here

Insert Figure 9 here

4Information for Nord Pool is obtained from www.nordpool.com; for E&W is obtained from via
www.bmreports.com where we use the surplus variable SLPD; and for PJM from www.pjm.com.
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We note that although reductions in available capacity are planned, and may be

known by market participants, they have also been the cause of some of the jumps

observed in price series. As an example, Krapels (2000) shows how the increase in

prices in the New England market during 7-8 June 1999, was due to a combination of

a known reduction in available capacity plus an unexpected increase in demand which

could not be met because power plants could not be ramped up in time. Another

example is Nord Pool where during the last months of 2002 and the beginning of

2003 the level of hydro reservoirs was at a historical low, and consequently, spot and

forward prices underwent a sharp increase.

Kollberg, Elf, Wigert, Lundquist, Mork, and Cho (1999) present further examples

of how important the relationship between generation capacity and levels of forward

prices in Nord Pool is: “... a shock that affected futures prices at Nord Pool was the

decision by the Swedish government to close down one nuclear reactor at Barsebäck.

At a time when the supply of electricity was already regarded as constrained in the

Nordic region, this decision to cut production resources even further made the market

react in a powerful way. Suddenly, there was a shift in all forward and futures con-

tracts with maturity after the closing date”. Therefore, fluctuations in price levels or

short-lived price spikes are not caused by abrupt changes in demand alone, but also,

possibly contributing on an equal footing, by changes in generation capacity.

Therefore, given the characteristics of the variable capacity we propose the fol-

lowing model for capacity:

Ct = gC(t) + χC
t (9)

dχC
t = −kCχC

t dt + σC(t)dZC
t . (10)
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Here gC(t) represents a deterministic seasonal component present in capacity and χC
t

is a mean-reverting process with speed of reversion kC , volatility captured by σC(t)

and dZC
t are the increments of a standard Brownian motion.5

In order to estimate empirically the parameters of the model given by equations

(9) and (10) we use a discretized version of the model similar to the one used in

the demand case. Depending on the market, we use different specifications for the

seasonal component. For instance, in Nord Pool we modeled gC(t) as

gC(t) = B0 +

12
∑

j=2

MjD
M
j +

y
∑

j=2

YjD
Y
j (11)

and in E&W we used

gC(t) = B0 +
12

∑

j=2

MjD
M
j + Ct (12)

where the dummies and parameters have the same interpretation as in the seasonal

component for demand. For example, in specification (11), monthly and annual

dummies are included in order to capture the changes on the level of the capacity

variable for the different months of the year and for the different years.

For PJM we used a different approach due to the nature of the data we have for

capacity. For example, from Figure 7 we observe the existence of important discrete

and permanent changes in the PJM capacity variable mainly as a consequence of a

planned expansion of the PJM market (see FERC (2002)). Therefore the deterministic

trend gC(t) is calculated as the mean of the monthly available capacity and the mean

5As in the demand model above we could also add another factor to account for long-term
stochastic changes in the capacity levels. Furthermore, depending on the particular market under
consideration, it could be desirable to add jumps in the dynamics of the short-term shocks χC

t to
account for sudden unexpected changes in available capacity that cannot be captured by diffusive
shocks.
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reverting component χC
t is given by the difference between our proxy for capacity and

the monthly means.

In the case of the PJM market we estimate kC and σC(t), employing autoregressive

of order 1 model. In all markets we assumed that the volatility coefficient in (10) is

constant, i.e. σC(t) = σC . The estimation results for PJM are B = 0.70 (recall that

B = 1 − kC) and σC = 107.13. The results for E&W and Nord Pool are reported in

Table 3.

Insert Table 3 here

4 The model: the relationship between spot prices

and state variables

Based on empirical evidence we know spot prices should be increasing in demand

and decreasing in capacity. Therefore, we may specify a generic function ϕ (·) such

that wholesale power prices are given by Pt = ϕ (Dt, Ct) and require ∂ϕ/∂D > 0 and

∂ϕ/∂C < 0.

In addition to requiring ϕ(·, ·) to be increasing in demand and decreasing in ca-

pacity, we look for plausible functional forms so that forward prices can be expressed

in closed-form. Hence, we propose the following model:

Pt = βeγCt+αDt , α > 0, γ < 0, β > 0, (13)
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where

Dt = gD(t) + χD
t (14a)

dχD
t = −kDχD

t dt + σD(t)dZD
t , (14b)

Ct = gC(t) + χC
t (14c)

dχC
t = −kCχC

t dt + σCdZC
t , (14d)

and the standard Brownian motions ZD
t and ZC

t are independent. Then, by applying

the natural logarithm to (13), we can write

ln Pt = h(t) + γχC
t + αχD

t (15)

where h(t) = ln β + γgC(t) + αgD(t). Further, we will assume that the seasonal

component h(t) has the same form as (7).

Before presenting the model under the risk-neutral probability measure, and de-

riving valuation formulæ for forwards, we present some preliminary evidence about

the adequacy of the proposed specification.

For example, by letting α = 0, we can analyze a restricted version of model (13).

One can show that in this “pure capacity” model the logarithm of the expected-price

is given by the following expression:

ln E
P
t [PT ] = ln β + γgC(T ) + γ

(

e−kC(T−t)χC
t +

∫ T

t

e−2kC(T−s)(σC)2ds

)

,

where E
P
t is the expectation operator with respect to the statistical measure P with

information up until time t. It must be noted that the parameter γ < 0 implies that
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expected power prices are decreasing,6 at an increasing rate, in capacity. For example,

if capacity goes down (resp. up) prices go up (resp. down). On the other hand, we

can also check the effect of seasonal changes in capacity on the expected price. For

instance, during months of high capacity, i.e. high gC(T ), expected prices are rela-

tively lower than months with low seasonal capacity. Similarly, it is straightforward

to see that positive (resp. negative) short-term deviations χC
t exert a downward (resp.

upward) pressure on expected prices and that this pressure decays at an exponential

rate given by the speed of mean reversion kC .

To estimate the parameters α and γ we follow two steps. First, we deseasonalize

the demand and capacity series using the results from the models (1), (2) and (9),

(10). Second, using the deseasonalized series for demand and capacity, χD
t and χC

t ,

we estimate h(t), α and γ in (15) by Maximum Likelihood and report the results in

Table 4. For example, we can see that for all markets the parameters α and γ possess

the correct sign and are statistically significant.

Insert Table 4 here

5 Valuation of futures contracts

In order to value derivatives contracts we have to express model (13) under a risk-

neutral probability measure. In line with the literature on commodities, we incorpo-

rate the price of risk for the different sources of uncertainty in the same way as in, for

example, Schwartz (1997) and Cartea and Figueroa (2005). In our case, the sources

of uncertainty are the demand and the effective generation capacity, and therefore

we introduce two additional parameters
(

φD(t), φC(t)
)

: the time-dependent market

6Assuming that gC(T ) +
(

e−kC(T−t)χC
t +

∫ T

t
e−2kC(T−s)(σC)2ds

)

> 0.
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price per unit of demand and capacity risk, respectively. Consequently, under the

risk-neutral probability measure Q the specification of the model is given by:

ln Pt = h(t) + γχC
t + αχD

t (16a)

dχD
t = −kD(χD

t + θD(t))dt + σD(t)dW D
t (16b)

dχC
t = −kC(χC

t + θC(t))dt + σCdW C
t (16c)

where dW D
t and dW C

t are the increments of two independent, standard Brownian

motions, and

θD(t) =
φD(t)σD(t)

kD
, (17)

θC(t) =
φC(t)σC

kC
, (18)

h(t), σD(t), σC , kD, kC have the same interpretation as above.

Integrating equations (16b) and (16c) over the time interval (t, T ) yields:

ln PT = h(T )

+γ

(

e−kC(T−t)χC
t + kC

∫ T

t

e−kC(T−s)θC(s)ds +

∫ T

t

e−kC(T−s)σCdW C
s

)

+α

(

e−kD(T−t)χD
t + kD

∫ T

t

e−kD(T−s)θD(s)ds +

∫ T

t

e−kD(T−s)σD(s)dW D
s

)

,

(19)

thus we can calculate the log-price of a forward contract at time t delivering one
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MWh, at a pre-specified future date T ,

ln f (t, T ) = ln E
Q
t [PT ]

= h(T )

+γ

(

e−kC(T−t)χC
t + kC

∫ T

t

e−kC(T−s)θC(s)ds +

∫ T

t

e−2kC(T−s)(σC)2ds

)

+α

(

e−kD(T−t)χD
t + kD

∫ T

t

e−kD(T−s)θD(s)ds +

∫ T

t

e−2kD(T−s)σ2
D(s)ds

)

,

(20)

where E
Q
t is the expectation operator with respect to the risk-neutral measure Q with

information up until time t.

We may also write the price of the forward contract as the product of the expected

price of power, under the physical measure P, E
P
t [PT ] and a correction factor that

depends on the market prices of demand and capacity risk:

f(t, T ) = exp

[

γkC

∫ T

t

e−kC(T−s)θC(s)ds + αkD

∫ T

t

e−kD(T−s)θD(s)ds

]

E
P
t [PT ]. (21)

Hence, the forward premium FP (t, T ), can be written as

FP (t, T ) = E
Q
t [PT ] − E

P
t [PT ]

= f(t, T ) − E
P
t [PT ]

=

(

exp

[

γkC

∫ T

t

e−kC(T−s)θC(s)ds + αkD

∫ T

t

e−kD(T−s)θD(s)ds

]

− 1

)

E
P
t [PT ],

(22)
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which also allows us to study the sign of the forward premium by looking at

sign{FP (t, T )} = sign

{

γkC

∫ T

t

e−kC(T−s)θC(s)ds + αkD

∫ T

t

e−kD(T−s)θD(s)ds

}

.

(23)

One of the main advantages of our model is that we are able to express in an

analytical way both the forward prices and the forward premiums. In commodities

markets, and especially in power markets, understanding the behavior of the forward

premium poses interesting challenges (see for example Benth, Cartea, and Kiesel

(2007)). One can focus attention on the forward bias itself (22), or focus on the

question of whether forward prices are trading above (i.e. FP (t, T ) > 0) or below

(i.e. FP (t, T ) < 0) the expected spot price. Thus, if we focus on the sign of the

forward bias (23), we can see that the two key components that affect FP (t, T ) are

the market prices of demand and capacity risk, which are in the functions θD(t) in (17)

and θC(t) in (18). For example, if over the interval (t, T ) the market price of demand

risk φD(s) < 0, then θD(s) < 0, in the same interval. This induces a downward

pressure on the price of the forward f(t, T ), as can be seen from expression (21).

Conversely, if over the interval (t, T ) φC(s) > 0, then θC(s) > 0. This exerts a

downward pressure on forward prices (recall that γ < 0).

Other interesting results arise from considering how volatility of demand or volatil-

ity of capacity affects the forward premium. For example, if for simplicity we assume

that γ = 0 and that over a relevant time interval (for instance a season) the param-

eters φD(t), σD(t) are constant, then the size and sign of the forward premium only

depend on the size and sign of θD(t). Furthermore, although the sign of θD(t) is de-

termined by the sign of φD(t), it is not clear whether periods of high or low volatility

of demand are accompanied by positive or negative φD(t).
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According to Bessembinder and Lemmon (2002) the forward premium is decreas-

ing in the variance of power prices and increasing in the skewness of power prices.

In our model, although shocks to demand and capacity are symmetric, an increase

in the volatility of demand or capacity increases both the variance and the skewness

of power prices as a result of the convexity of the exponential function. Therefore

during periods of high σD(t) there would be two opposing forces acting on the forward

premium FP (t, T ) and this is why we cannot unambiguously determine the sign of

the term φD(t). A similar argument applies to the relationship between the sign of

φC(t) and the size of σC .

5.1 The forward premium

The forward premium is an interesting quantity because it allows us to interpret how

‘strong’ hedging pressures from buyers and sellers of electricity are. For example, a

positive forward premium indicates that forward contracts are trading at a premium

over and above expected spot prices due to pressure from buyers. In our analysis

we still need to estimate the risk-neutral parameters relating to the market prices of

demand φD(t) and capacity φC(t) risk.7 For PJM, E&W and Nord Pool we employ

Nonlinear Least Squares to estimate φD(t) and φC(t) from monthly forwards, and

since (20) is for delivery in one day, we use, as in Lućıa and Schwartz (2002),

F (t, T1, T2) =
1

T2 − T1

n
∑

i=1

f(t, τi) T1 < T2, (24)

where T1 and T2 are the start and finish of the delivery period, n is the number of

days between T1 and T2 and f(t, τi) is given by (20). Furthermore, partly due to:

7The other parameters have already been estimated under the physical measure.
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simplicity; the type of data we have as proxies for capacity; and the fact that we

have assumed that the volatility of capacity is constant (σC(t) = σC), we assume

that the market price of capacity risk is constant, i.e. φC(t) = φC . However, on the

other hand, we assume that the market price of demand risk is constant within the

different seasons in the same way that we assumed that volatility of demand σD(t)

was also constant within seasons.

To estimate the market prices of risk we build on the results obtained from esti-

mating the model under the physical measure. We use the deseasonalized demand

and capacity series; the mean reversion coefficients kD and kC ; the (seasonal) volatil-

ity of demand σD(t) and volatility of capacity σC (all obtained in sections 3.1 and

3.2); and h(t), α and γ obtained in section 4. The last step consists of estimating

the market prices of capacity and demand risk. We estimate them by minimizing the

sum of squared deviations between theoretical forward prices, given by (24), and daily

quotes for monthly forwards in each market. Moreover, for each monthly contract we

take observations of the price of the contract every day, until start of delivery, where

the first price is that observed one month prior to the start of delivery.8

Studies such as Bessembinder and Lemmon (2002), Pirrong and Jermakyan (1999

and 2000) and Villaplana (2005) present evidence for and discuss the existence of a

seasonal pattern in the forward premium on the PJM. Our framework allows us to

understand the different components that affect the seasonality, magnitude and sign

of the forward premium. In our model the seasonal trends present in the volatility of

demand σD(t) and in the market price of demand risk φD(t), are the main drivers of

the seasonal pattern exhibited by the forward premium (recall that we have market

8For example, for a forward delivering throughout the month of March, we use the forward price
of the March contract for every day it was traded during the month of February.
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price of capacity risk is constant). The sign and magnitude of the forward premium

on the other hand, are driven by the signs and magnitudes of φD(t), φC , σD(t) and

σC . Tables 5, 6 and 7 show our parameter estimates for the market prices of risk in

the PJM, E&W and Nord Pool.

To study the market prices of risk in the PJM market, we split the data set into

two sub-periods: 1999 to 2002; and 2002 to 2006. We do so to reflect a structural

change in the PJM which partly resulted from its expansion to other territories, which

commenced in 2002 (see FERC (2002)). Results for these two sub-periods can be seen

in Table 5. We find that the market price of capacity risk φC is statistically significant

for the periods 2002-2006, where φC < 0, and the year 1999, where φC > 0. With

regards to the market price of demand risk, there are three points to note. First, for

both the periods, January 1999 to March 2002 and April 2002 to August 2006, the

market prices of demand risk are statistically significant, with the exception of the

months August, September and October in the sample April 2002 to August 2006.

Second, the signs of the statistically significant parameters φD(t) are positive in all

cases. Third, the periods with largest market price of demand risk coincide with the

periods of largest positive forward premium.

Insert Table 5 here

In the three markets we study, our empirical findings indicate that the forward

premium is higher in those contracts that mature in periods of high volatility of de-

mand. To calculate the forward premium we take the difference between forward

prices, obtained from the fitted model, and expected spot price based on the pa-

rameter estimates derived above. For example, from Table 2 we can verify that the

months with the highest volatility of demand in the PJM market are June, July and
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August and those with the second highest volatility value are September, October and

November. Moreover, in PJM during the sub-period 1999-2002 we can see that the

months of May, June and July,9 (which exhibit the largest forward premium ranging

between $30 and $75 as shown in Figure 10) coincide with the months where we found

that the volatility of demand was highest and the market price of demand risk was

also highest.10

In PJM we also observe that the forward premium is negative during the months

of January, February, November and December in 1999. In this year φC > 0 and hence

the market price of capacity risk exerts a downward pressure, whilst the market price

of demand risk applies an upward pressure, on the forward prices. It is during the

months where volatility of demand is relatively low that we see a downward pressure

due to capacity risk outweighing the effects of a positive market price of demand risk.

This results in a negative forward premium. We provide an intuitive explanation of the

negative forward premium in two steps. First, since during months of low volatility

of demand the probability of observing price spikes is relatively low, buyers have

fewer incentives to cover their positions by purchasing power forward, but sellers still

prefer to sell forward contracts to reduce variability in their profits. This reasoning

applies at all times when the volatility of demand is low, but does not imply that

the forward premium must be negative, it only implies that the contribution to the

forward premium due to demand risk and price spikes is not too large during periods

of low demand and low volatility of demand.

The second leg of the argument is based on the fact that sellers face variability

9We remark that the period with high volatility of demand aligns with that of high forward
premium because we are looking at monthly forwards that trade in May, June and July, but with
delivery period in June, July and August.

10When we look at particular years or subsets of the data to estimate the market prices of risk
and capacity, we do not re-estimate the other parameters of the model.
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of power prices due to unexpected changes in the total generation capacity of the

system. Positive capacity shocks reduce power prices and negative shocks increase

power prices. During times of low demand and low volatility of demand, it is less likely

to see price spikes as a result of a fall in capacity. Hence, although sellers would like to

take advantage of possible price spikes, due to negative capacity shocks, by selling spot

rather than forward, their fear of price falls, due to unexpected positive movements

in the total generation capacity, provides a much stronger incentive to sell forward

contracts. Hence, this willingness to hedge risks, induced by random deviations in

capacity, drives forward prices down. In some circumstances, this downward pressure

is strong enough to drive discounts up to the extent that expected spot prices are

higher than forward prices (thus generating a negative forward premium).

We can compare our results for the years 1999 and 2000 with those of Bessem-

binder and Lemmon (2002), where our findings are broadly in agreement (signs and

magnitudes). From Figures 12 and 13 we can observe that the lowest forward pre-

mium occurs between the months of January to May and September to December.

Insert Figure 10 and 11 here

Insert Figure 12 and 13 here

Insert Table 5 here

Similarly, we can interpret the results for the E&W market. In Table 6 we present

the estimation results for the market prices of demand and capacity risk. We employ

forward contracts data from April 2001 to December 2005 and present results for the

whole series and for the years 2002, 2003, 2004 and 2005. For the entire data set we see

that φC is positive and statistically significant and that the largest φD(t) are those
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encompassing the months August through January. During these months, a large

positive market price of demand risk is also accompanied by a period of high volatil-

ity of demand. The combined effect of a large positive φD(t) and large σD(t) exerts

an upward pressure on the monthly forward contracts trading in the months Au-

gust through January, with delivery in September through February. Consequently,

monthly forward contracts trade significantly above the expected prices of electricity;

in other words, there is a substantial forward premium during these months.

Figure 14 depicts the forward premium in E&W for the period April 2001 to De-

cember 2005. We observe that this premium is highest between August and January

of each year, ranging between £2 and £9 per MWh, and that it also follows a sea-

sonal pattern (due mainly to the seasonality of the volatility of demand). On the

other hand, during the rest of the year, forward contracts trade at a considerable

discount, as revealed by a forward premium ranging between £-2 and £-9 per MWh.

We can interpret this negative forward premium in the same way as in the PJM.

Moreover, in the appendix we show the forward premium for 2002, 2003, 2004 and

2005 (see Figures 15, 16, 17 and 18).

Insert Table 6 here

Insert Figure 14 here

Finally, Table 7 presents the market prices of demand and capacity risk for the

Nord Pool market. We focus on the period 2003-2006 and also look at the years

2004, 2005 and 2006. In all cases the market prices of capacity and demand risk

are statistically significant. Over the period 2003-2006 we observe that the months

with negative FP (t, T ) are February, May, June and July; the latter three months

coinciding with the periods of lowest volatility of demand. See Figures 19, 20, 21 and
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22 below where we depict the forward premium for the whole sample 2003 to 2006

and for the years 2004, 2005 and 2006.

Insert Table 7 here

Insert Figures 19, 20, 21 and 22 about here

6 Conclusions

The main objective of this article is to propose an electricity price model that allows us

to: understand the behavior of spot prices; understand the connection between power

prices and forward contracts; and investigate the dynamics of the forward premium,

defined as the difference between forward prices and expected power prices.

We assume that wholesale electricity prices can be explained by two state variables:

demand and capacity. We model these two variables, and their relationship with

power prices, by employing data from three different markets: PJM, E&W and Nord

Pool. One of the key requirements we impose on the model is that it must be able to

express, in an analytical way, expected spot prices and the price of forward contracts.

This allows us to express the forward premium in closed-form.

We highlight five of our findings. First, in all markets, demand or load follows

a strong seasonal component and a demand model with seasonal or time-varying

volatility is preferred to one with constant volatility.

Second, in all markets, monthly forward contracts trade at a higher premium

during months of high volatility of demand. We saw that in PJM the months that

showed the highest volatility of demand also exhibited the largest forward premium.

Our calculations of the forward premium for the individual years of 1999 and 2000
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are similar to those obtained by Bessembinder and Lemmon (2002) and can reach

levels ranging between $30 and $75 during periods of high volatility of demand in

May, June and July.

Third, in all markets, we found that in the majority of the cases when data

from monthly forwards were employed, months with high volatility of demand were

accompanied with statistically significant positive φD(t).

Fourth, we also observed in all markets that the forward premium dynamics are

seasonal. It is interesting to note that in PJM, for the years 1999 and 2000, there

are periods where the forward premium achieves negative values. Similarly, in the

E&W market we saw that during the months of February to July in 2002-2005 the

monthly forward contracts traded below the expected spot price of power, a situation

also present in the Nord Pool during the months of February, April, May June and

July during the period 2003-2006. The intuition behind this result is that during

the periods of negative forward premium, monthly forwards trade at a large discount

due to hedging pressure from sellers. Likewise, during the months between August

and January, forward contracts in E&W were trading at a high premium, indicating

hedging pressures from buyers in this market.

Finally, our findings indicate that the market price of capacity risk could be either

positive or negative depending on the market and period under study. For example,

over the period 2001 to 2005, we found that in E&W φC > 0, and over the period 2003-

2006 we found that in Nord Pool φC > 0, which applied a downward pressure on the

price of forward contracts. This pressure reflected sellers’ willingness to offer forward

contracts at a considerable discount, especially during the months of February to July

in E&W and during the months of February to July, with the exception of March,

in Nord Pool. In these months, forward contracts traded below the expected spot
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price as revealed by a forward premium ranging between £-2 and £-9 per MWh in

E&W and between NOK-1 and NOK-7 per MWh in Nord Pool. The intuition behind

this result is that during months of relatively low volatility of demand, shocks to the

supply side become more relevant to sellers who want to hedge the unwanted outcome

of price falls that result from unexpected positive shocks to generation capacity.
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PJM E&W Nord Pool
Dt Dt − Dt−1 lnDt ln (Dt/Dt−1) Dt Dt − Dt−1 lnDt ln (Dt/Dt−1) Dt Dt − Dt−1 lnDt ln (Dt/Dt−1)

Num Obs 2800 2799 2800 2799 1240 1239 1240 1239 2922 2921 2922 2991
Mean 43775.21 18.94 10.60 0.00 36433.53 8.58 10.50 0.00 14515.38 8.43 9.50 0.00

Median 34612.00 -149.00 10.45 0.00 35715.00 50.00 10.48 0.00 13142.25 -50.00 9.48 0.00
Min 20699.00 -16311.00 9.94 -0.28 25434.00 -8309.00 10.14 -0.23 5624.80 -3819.40 8.63 -0.18
Max 116187.00 16270.00 11.66 0.37 54354.00 8320.00 10.90 0.19 39227.80 6137.60 10.58 0.34
Std 20415.01 3129.13 0.41 0.07 4654.99 1217.21 0.13 0.03 6380.82 826.26 0.39 0.05

Skew 1.21 0.41 0.79 0.49 0.60 -0.32 0.30 -0.29 1.36 1.03 0.54 0.81
Kurtosis 0.23 2.85 -0.67 1.39 0.08 10.42 -0.39 9.91 1.47 6.18 -0.40 2.38

Pt Pt − Pt−1 ln Pt ln (Pt/Pt−1) Pt Pt − Pt−1 lnPt ln (Pt/Pt−1) Pt Pt − Pt−1 lnPt ln (Pt/Pt−1)
Num Obs 2800 2799 2800 2799 1240 1239 1240 1239 2922 2921 2922 2991

Mean 37.48 0.01 3.50 0.00 24.87 0.02 3.10 0.00 27.47 0.00 3.19 0.00
Median 33.69 -0.41 3.52 -0.01 20.37 0.00 3.01 0.00 26.21 -0.14 3.27 -0.01

Min 8.19 -368.00 2.10 -2.61 10.39 -86.27 2.34 -1.52 3.89 -32.28 1.36 -0.77
Max 397.34 251.18 5.98 2.78 183.32 139.40 5.21 1.77 114.61 53.72 4.74 1.19
Std 22.93 16.22 0.48 0.27 14.83 7.98 0.44 0.18 14.39 2.70 0.51 0.10

Skew 4.76 -2.29 0.32 0.24 3.28 3.89 1.11 0.89 1.59 2.62 -0.20 1.72
Kurtosis 46.60 167.20 0.60 13.37 17.75 108.60 1.32 16.95 4.46 82.69 0.11 26.53

Table 1: Statistics for power prices and demand
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PJM E&W Nord Pool
Const Vol Seas Vol Const Vol Seas Vol Const Vol Seas Vol

B0 32116.15 62.05 32253.96 91.70 37131.58 154.72 37024.91 103.14 1267358.28 96.31 1268589.72 84.41
M2 -1079.54 -1.43 -1154.57 -2.49 319.85 0.69 126.86 0.17 10234.39 0.81 9316.71 0.61
M3 -3874.12 -4.96 -3916.81 -7.74 -1819.47 -5.32 -1417.90 -4.14 -40723.80 -3.65 -40631.19 -3.11
M4 -6455.70 -7.89 -6700.07 -12.33 -4884.96 -15.89 -4913.86 -11.85 -223557.88 -18.00 -224221.86 -15.69
M5 -4627.65 -7.21 -4640.05 -10.63 -6315.90 -22.56 -6313.21 -16.03 -358245.29 -25.64 -364414.32 -23.49
M6 1548.45 2.62 1692.55 2.74 -7200.07 -17.01 -7231.53 -19.57 -416490.37 -31.36 -417859.21 -34.25
M7 5840.82 10.12 6074.61 10.17 -7525.10 -12.85 -7418.93 -18.75 -463264.87 -26.71 -466017.54 -33.56
M8 5990.73 9.91 6065.91 9.50 -7205.93 -19.92 -7319.21 -20.35 -406970.33 -28.02 -409953.25 -32.06
M9 -909.60 -1.42 -811.73 -1.88 -5249.88 -14.54 -5299.99 -11.36 -343623.05 -25.39 -344530.58 -22.83
M10 -6099.74 -6.85 -5952.42 -10.55 -3639.70 -13.31 -3670.37 -9.46 -228811.93 -20.58 -230903.21 -17.98
M11 -5214.99 -6.19 -5192.79 -9.48 318.03 1.11 331.71 0.83 -117514.59 -10.55 -117801.93 -9.19
M12 -417.11 -0.59 -461.33 -1.09 309.30 1.38 353.37 0.93 -61875.93 -5.74 -62036.10 -4.76
C 3.72 17.45 3.93 20.65
Y2 7179.39 19.24 7091.29 20.95
Y3 37256.96 71.44 37828.30 91.80
Y4 41496.42 68.57 43084.11 45.44 3857.12 0.35 4573.77 0.39
Y5 51677.70 143.86 50417.87 150.02 16966.61 1.56 13930.77 1.19
Y6 22131.24 2.00 20767.42 1.75
B 0.67 85.73 0.73 55.88 0.67 44.18 0.65 34.74 0.82 48.91 0.82 45.58
σD

const 3433.87 97.96 1582.91 87.37 55524.17 48.95
σD

1 2630.69 33.45 2066.98 42.96 61361.61 22.53
σD

2 54.48 0.53 -453.75 -6.06 -3247.50 -0.85
σD

3 94.92 0.83 -451.93 -6.22 -4476.56 -1.31
σD

4 1922.57 12.49 -1085.51 -19.99 -18622.78 -5.46

LL -19128.02 -18880.93 -10918.53 -10833.48 -14986.35 -14968.35
SC 38392.86 37921.48 21943.92 21795.19 30094.75 30078.73

Table 2: Parameter estimates for demand in PJM, E&W and Nord Pool. The first column for each market assumes
that volatility σD(t) is constant and the second column assumes volatility varies across seasons according to (6). Note
that σD(t) for winter is given by σD

1 , for spring is σD
1 + σD

2 , fall is σD
1 + σD

3 and summer is σD
1 + σD

4 . LL: Log-likelihood
and SC: Schwarz Criterion.
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E&W Nord Pool
Const Vol t-stat Const Vol t-stat

B0 6166.75 18.21 52.30 42.34
B 0.63 32.18 0.85 60.16
σC 2056.30 58.73 3.88 39.17
C -0.71 -2.54
M2 -762.91 -1.86 -11.42 -18.67
M3 -1508.77 -3.04 -23.39 -32.69
M4 -1100.47 -2.46 -30.28 -29.00
M5 -1498.00 -3.90 -22.36 -30.16
M6 -1623.46 -3.30 -8.57 -10.83
M7 -3381.43 -7.91 4.03 4.41
M8 -4635.72 -9.37 8.52 8.62
M9 -2248.21 -6.54 13.86 16.78
M10 -3742.38 -7.92 15.71 17.88
M11 -2885.80 -6.11 14.60 16.34
M12 -1270.50 -3.34 10.30 11.30
Y4 7.30 5.84
Y5 16.18 13.18
Y6 5.87 4.91

LL -1180.92 -3366.42

Table 3: Parameter estimates for capacity in E&W and Nord Pool

Figures
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PJM E&W Nord Pool
Coef t-stat Coef t-stat Coef t-stat

B0 3.2413 163.1605 2.6472 98.9554 3.3564 200.6536
M2 -0.0637 -2.3174 0.0291 0.9603 0.0379 2.2305
M3 0.0075 0.2786 0.0449 1.5170 0.1730 10.4027
M4 -0.0452 -1.6687 0.1118 3.9278 0.1813 10.7993
M5 -0.1294 -4.6273 0.1164 4.1190 0.0512 3.0833
M6 -0.1249 -4.5751 0.0850 2.9768 0.1147 6.839
M7 0.1098 4.0543 0.2373 8.3983 0.1494 8.9775
M8 0.1062 3.9221 0.3709 13.1061 0.3098 18.6285
M9 -0.0932 -3.3033 0.3583 12.5747 0.2138 13.3862
M10 -0.1252 -4.5042 0.3384 11.9633 0.2005 12.6572
M11 -0.2077 -7.4087 0.3469 12.1754 0.1695 10.6300
M12 -0.0404 -1.4533 0.2915 10.2235 0.0551 3.4783
Y1 0.3818 28.7939
Y2 0.5460 23.9803 -0.0833 -4.3399
Y3 0.5535 9.5811 0.0629 3.0118
Y4 0.7940 47.6204 0.2538 11.9236 -0.1352 -10.5361
Y5 0.9724 50.7857 -0.1258 -9.8002
Y6 0.3617 28.1650
Y7

α 0.0000380 34.5499 0.000014966 5.6122 0.000000752 17.4695
γ -0.0001486 -3.9060 -0.000043112 -16.8483 -0.006668338 -13.0018

R2 0.6196 0.8021 0.8235
SSR 248.2981 46.6000 15.4325

Table 4: Spot model and parameter estimates
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Coefficient Std Error t-stat Signif

1999-2002 φD(t)
Feb, March, April 0.55164 0.16626 3.31785 0.00095
Nov, Dec, Jan 0.46548 0.16206 2.87221 0.00418
May, June, July 1.30065 0.08527 15.25191 0.00000
Aug, Sep, Oct 0.53861 0.16105 3.34431 0.00086

φC -2.24838 1.00732 -2.23204 0.02587
Adjusted R2 0.60562
Mean Square Errors 200.42

2002-2006 φD(t)
Feb, March, April 0.11636 0.07653 1.52049 0.12866
Nov, Dec, Jan 0.36663 0.07215 5.08171 0.00000
May, June, July -0.04187 0.04110 -1.01878 0.30852
Aug, Sep, Oct 0.32195 0.07063 4.55837 0.00001

φC -3.92131 0.45467 -8.62447 0.00000
Adjusted R2 0.53570
Mean Square Errors 146.79

1999 φD(t)
Feb, March, April 0.59546 0.22512 2.64510 0.00867
Nov, Dec, Jan 0.48079 0.22019 2.18353 0.02991
May, June, July 1.52356 0.11683 13.04116 0.00000
Aug, Sep, Oct 1.20182 0.20663 5.81619 0.00000

φC 2.85035 1.39951 2.03668 0.04271
Adjusted R2 0.84361
Mean Square Errors 54.943

2000 φD(t)
Feb, March, April 0.65748 0.38310 1.71622 0.08733
Nov, Dec, Jan 1.40370 0.35614 3.94145 0.00010
May, June, July 1.94386 0.19631 9.90191 0.00000
Aug, Sep, Oct 1.12011 0.35219 3.18041 0.00165

φC 0.69783 2.36838 0.29464 0.76850
Adjusted R2 0.77831
Mean Square Errors 207.58

Table 5: PJM market prices of demand and capacity risk January 1999 to March 2002,
April 2002 to August 2006, 1999, 2000. When estimating φD(t) and φC for different
periods we keep all model parameters unchanged, but restrict the forward data to the
particular periods we want to focus on.
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Coefficient Std Error t-stat Signif

2001-2005 φD(t)
Feb, March, April 0.36433 0.47116 0.77327 0.43951
Nov, Dec, Jan 2.73326 0.33923 8.05738 0.00000
May, June, July -0.13266 0.72444 -0.18312 0.85473
Aug, Sep, Oct 4.12213 0.42046 9.80374 0.00000

φC 0.53510 0.09341 5.72867 0.00000
Adjusted R2 0.83077
Mean Square Errors 26.26

2002 φD(t)
Feb, March, April -1.88930 0.77119 -2.44986 0.01496
Nov, Dec, Jan 2.82391 0.52457 5.38331 0.00000
May, June, July -8.36588 1.21832 -6.86671 0.00000
Aug, Sep, Oct -1.64332 0.68535 -2.39780 0.01721

φC 1.64332 0.68535 2.39780 0.01721
Adjusted R2 0.46172
Mean Square Errors 7.98

2003 φD(t)
Feb, March, April -2.04081 0.90864 -2.24599 0.02556
Nov, Dec, Jan 2.91950 0.61565 4.74211 0.00000
May, June, July -2.46126 1.34678 -1.82752 0.06879
Aug, Sep, Oct 2.89532 0.77203 3.75026 0.00022

φC 0.06715 0.16956 0.39604 0.69241
Adjusted R2 0.65149
Mean Square Errors 11.99

2004 φD(t)
Feb, March, April 0.10659 0.52472 0.20313 0.83920
Nov, Dec, Jan 1.29704 0.38219 3.39373 0.00080
May, June, July 0.42891 0.80338 0.53389 0.59388
Aug, Sep, Oct 2.87404 0.47051 6.10837 0.00000

φC 0.01141 0.10324 0.11052 0.91208
Adjusted R2 0.72906
Mean Square Errors 6.73

2005 φD(t)
Feb, March, April 0.89137 0.95574 0.93266 0.35190
Nov, Dec, Jan 2.78877 0.69506 4.01231 0.00008
May, June, July 0.86419 1.47663 0.58525 0.55891
Aug, Sep, Oct 5.87490 0.85131 6.90103 0.00000

φC 0.87961 0.19019 4.62484 0.00001
Adjusted R2 0.68631
Mean Square Errors 57.43

Table 6: E&W market prices of demand and capacity risk 2001-2005, 2002, 2003,
2004, 2005. When estimating φD(t) and φC for different periods we keep all model
parameters unchanged, but restrict the forward data to the particular periods we want
to focus on.
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Coefficient Std Error t-stat Signif

2003-2006 φD(t)
Feb, March, April 0.89836 0.11114 8.08325 0.00000
Nov, Dec, Jan 1.24279 0.09926 12.51998 0.00000
May, June, July 0.64019 0.14490 4.41825 0.00001
Aug, Sep, Oct 1.47927 0.10416 14.20239 0.00000

φC 0.50350 0.07246 6.94839 0.00000
Adjusted R2 0.80494
Mean Square Errors 24.76

2004 φD(t)
Feb, March, April 0.50788 0.08984 5.65321 0.00000
Nov, Dec, Jan 1.05481 0.08043 13.11525 0.00000
May, June, July 0.72267 0.11480 6.29509 0.00000
Aug, Sep, Oct 0.66691 0.08588 7.76537 0.00000

φC 0.37751 0.05749 6.56696 0.00000
Adjusted R2 0.12273
Mean Square Errors 3.51

2005 φD(t)
Feb, March, April 1.33298 0.24407 5.46135 0.00000
Nov, Dec, Jan 2.35596 0.21745 10.83446 0.00000
May, June, July 1.62829 0.31741 5.12995 0.00000
Aug, Sep, Oct 1.88832 0.23401 8.06941 0.00000

φC 1.01548 0.16274 6.23977 0.00000
Adjusted R2 0.26811
Mean Square Errors 20.21

2006 φD(t)
Feb, March, April 0.89782 0.12698 7.07055 0.00000
Nov, Dec, Jan 0.62746 0.11828 5.30476 0.00000
May, June, July 0.26146 0.16710 1.56474 0.11888
Aug, Sep, Oct 1.78522 0.11907 14.99295 0.00000

φC 0.37236 0.08267 4.50431 0.00001
Adjusted R2 0.80375
Mean Square Errors 19.46

Table 7: Nord Pool market prices of demand and capacity risk 2003-2006, 2004, 2005,
2006. When estimating φD(t) and φC for different periods we keep all model parameters
unchanged, but restrict the forward data to the particular periods we want to focus on.
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Figure 1: PJM demand and estimated seasonal component gD(t) over the period
January 1999 through August 2006
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Figure 2: E&W demand and estimated seasonal component gD(t) over the period
March 2001 through March 2006
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Figure 3: Nord Pool demand and estimated seasonal component gD(t) over the period
September 2003 through December 2006

PJM forward premium figures
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Figure 4: PJM spot prices over the period January 1999 through August 2006
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Figure 5: E&W spot prices over the period March 2001 through March 2006
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Figure 6: Nord Pool spot prices over the period January 1999 through December 2006
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Figure 7: PJM installed capacity over the period January 1999 through August 2006
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Figure 8: E&W capacity surplus and estimated seasonal component gC(t) over the
period March 2001 through March 2006
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Figure 9: Nord Pool capacity in terms of percentage of maximum reservoir capac-
ity and estimated seasonal component gC(t) over the period September 2003 through
December 2006
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Figure 10: PJM forward premium January 1999 through April 02

E&W forward premium figures
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Figure 11: PJM forward premium 2002 through 2006
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Figure 12: PJM forward premium 1999
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Figure 13: PJM forward premium 2000
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Figure 14: E&W forward premium April 2001 through December 05
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Figure 15: E&W forward premium 2002

Nord Pool forward premium figures
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Figure 16: E&W forward premium 2003
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Figure 17: E&W forward premium 2004
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Figure 18: E&W forward premium 2005
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Figure 19: Nord Pool forward premium September 2003 to December 2006
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Figure 20: Nord Pool forward premium 2004
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Figure 21: Nord Pool forward premium 2005
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Figure 22: Nord Pool forward premium 2006
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