González, JavierRomera, RosarioCarretero Pérez, JesúsPérez, Jose M.2006-11-092006-11-092006-03https://hdl.handle.net/10016/236The aim of this paper is to apply two adaptive control formulations under uncertainty, say open-loop and closed-loop, to the process of developing maintenance and repair policies for railway infrastructures. To establish the optimal maintenance and repair policies for railway lines, we use a previous design of risk model based on two factors: the criticality and the deterioration ratios of the facilities. Thus, our theory benefits from the Reliability Centered Management methodology application, but it also explicitly models uncertainty in characterizing a facility deterioration rate to decide the optimal policy to maintain the railway infrastructures. This may be the major contribution of this work. To verify the models presented, a computation study has been developed and tested for a real scenario: the railway line Villalba-Cercedilla in Madrid (Spain). Our results demonstrate again that applying any adaptive formulation, the cost of the railway lines maintenance shown is decreased. Moreover applying a Closed Loop Formulation the cost associated to the risk takes smaller values (40% less cost for the same risk than the deterministic approach), but with an Open Loop formulation the generated risk in the railway line is also smaller.695824 bytesapplication/pdfengOptimal railway infrastructure maintenance and repair policies to manage risk under uncertainty with adaptive controlworking paperEstadísticaopen accessws061605