López del Moral Hernández, DavidBarrado Bautista, AndrésSanz García, Clara MarinaLázaro Blanco, AntonioFernández Herrero, CristinaZumel Vaquero, Pablo2022-08-032022-08-032019-12López del Moral, D., et al. Analysis and implementation of the Autotransformer Forward-Flyback converter applied to photovoltaic systems . In: Solar energy, vol. 194, Dec. 2019, Pp. 995-1012.0038-092X1471-1257 (online)https://hdl.handle.net/10016/35573The Distributed Maximum Power Point Tracking (DMPPT) architecture is employed to overcome the mismatching phenomena in grid-tied photovoltaic (PV) installations. In this kind of architecture, a DC-DC module integrated converter (MIC) manages each PV panel. Thanks to the DC-DC converters, the differences between PV panels do not influence others, maximizing the amount of harvested power. The MIC requirements to make this kind of solutions profitable are voltage step-down and step-up capability, low cost and high efficiency. This paper analyses the Autotransformer Forward-Flyback (AFF) converter. This converter is considered as a MIC candidate for fulfilling the requirements above. The study of the AFF converter includes the steady-state analysis and the small signal analysis in continuous conduction mode. The advantages of the AFF converter are the capability of voltage step-down and step-up; the simplicity since it only includes a single controlled switch; the use of an autotransformer; good dynamic performances and the soft switching characteristics in all the diodes. The paper includes a detailed AFF converter step-by-step design procedure, applied to 100 kW grid-tied PV installation, in which the effect of shadows has been considered. A 225 W AFF converter prototype validates the theoretical analyses, achieving an efficiency up to 94.5%.18eng© 2019 International Solar Energy Society. Published by Elsevier Ltd. All rights reserved.This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Atribución-NoComercial-SinDerivadas 3.0 EspañaAutotransformerDC/DC converterDMPPTEfficiencyModule integrated convertersPhotovoltaicAnalysis and implementation of the autotransformer forward-flyback converter applied to photovoltaic systemsresearch articleElectrónicahttps://doi.org/10.1016/j.solener.2019.10.082open access9951012SOLAR ENERGY194AR/0000024357