González Arribas, DanielSoler Arnedo, Manuel FernandoSanjurjo Rivo, Manuel2018-05-242018-05-242018González-Arribas, D., Soler, M., Sanjurjo-Rivo, M. (2018). Robust Aircraft Trajectory Planning Under Wind Uncertainty Using Optimal Control. Journal of Guidance, Control, and Dynamics, 41(3), pp. 673-6880731-5090https://hdl.handle.net/10016/26873Uncertainty in aircraft trajectory planning and prediction generates major challenges for the future Air Traffic Management system. Therefore, understanding and managing uncertainty will be necessary to realize improvements in air traffic capacity, safety, efficiency and environmental impact. Meteorology (and, in particular, winds) represents one of the most relevant sources of uncertainty. In the present work, a framework based on optimal control is introduced to address the problem of robust and efficient trajectory planning under wind forecast uncertainty, which is modeled with probabilistic forecasts generated by Ensemble Prediction Systems. The proposed methodology is applied to a flight p l anning s c enario u n der a f r ee-routing operational paradigm and employed to compute trajectories for different sets of user preferences, exploring the trade-off between average flight cost and p r edictability. Results show how the impact of wind forecast uncertainty in trajectory predictability at a pre-tactical planning horizon can be not only quantified, b ut a l so r educed t hrough t he application of the proposed approach.46text/xmlapplication/pdfeng© 2018 by Daniel González-Arribas, Manuel Soler, and Manuel Sanjurjo-RivoRobust Aircraft Trajectory Planning under Wind Uncertainty using Optimal Controlresearch articleAeronáuticahttps://doi.org/10.2514/1.G002928open access6733688Journal of Guidance, Control and Dynamics41AR/0000021180