Desco Menéndez, ManuelPérez-Juste Abascal, Juan FelipeMontesinos Suárez de la Vega, Paula2016-01-192016-01-192015-072015-09-25https://hdl.handle.net/10016/22169Mención Internacional en el título de doctorMagnetic Resonance Imaging (MRI) is a biomedical imaging modality with outstanding features such as excellent soft tissue contrast and very high spatial resolution. Despite its great properties, MRI suffers from some drawbacks, such as low sensitivity and long acquisition times. This thesis focuses on providing solutions for the second MR drawback, through the use of compressed sensing methodologies. Compressed sensing is a novel technique that enables the reduction of acquisition times and can also improve spatiotemporal resolution and image quality. Compressed sensing surpasses the traditional limits of Nyquist sampling theories by enabling the reconstruction of images from an incomplete number of acquired samples, provided that 1) the images to reconstruct have a sparse representation in a certain domain, 2) the undersampling applied is random and 3) specific non-linear reconstruction algorithms are used. Cardiovascular MRI has to overcome many limitations derived from the respiratory and cardiac cycles, and has very strict requirements in terms of spatiotemporal resolution. Hence, any improvement in terms of reducing acquisition times or increasing image quality by means of compressed sensing will be highly beneficial. This thesis aims to investigate the benefits that compressed sensing may provide in two cardiovascular MR applications: The acquisition of small-animal cardiac cine images and the visualization of human coronary atherosclerotic plaques. Cardiac cine in small-animals is a widely used approach to assess cardiovascular function. In this work we proposed a new compressed sensing methodology to reduce acquisition times in self-gated cardiac cine sequences. This methodology was developed as a modification of the Split Bregman reconstruction algorithm to include the minimization of Total Variation across both spatial and temporal dimensions. We simulated compressed sensing acquisitions by retrospectively undersampling complete acquisitions. The accuracy of the results was evaluated with functional measurements in both healthy animals and animals with myocardial infarction. The method reached accelerations rates of 10-14 for healthy animals and acceleration rates of 10 in the case of unhealthy animals. We verified these theoretically-feasible acceleration factors in practice with the implementation of a real compressed sensing acquisition in a 7 T small-animal MR scanner. We demonstrated that acceleration factors around 10 are achievable in practice, close to those obtained in the previous simulations. However, we found some small differences in image quality between simulated and real undersampled compressed sensing reconstructions at high acceleration rates; this might be explained by differences in their sensitivity to motion contamination during acquisition. The second cardiovascular application explored in this thesis is the visualization of atherosclerotic plaques in coronary arteries in humans. Nowadays, in vivo visualization and classification of plaques by MRI is not yet technically feasible. Acceleration techniques such as compressed sensing may greatly contribute to the feasibility of the application in vivo. However, it is advisable to carry out a systematic study of the basic technical requirements for the coronary plaque visualization prior to designing specific acquisition techniques. On simulation studies we assessed spatial resolution, SNR and motion limits required for the proper visualization of coronary plaques and we proposed a new hybrid acquisition scheme that reduces sensitivity to motion. In order to evaluate the benefits that acceleration techniques might provide, we evaluated different parallel imaging algorithms and we also implemented a compressed sensing methodology that incorporates information from the coil sensitivity profile of the phased-array coil used. We found that, with the coil setup analyzed, acceleration benefits were greatly limited by the small size of the FOV of interest. Thus, dedicated phased-arrays need to be designed to enhance the benefits that accelerating techniques may provide on coronary artery plaque imaging in vivo.La Imagen por Resonancia Magnética (IRM) es una modalidad de imagen biomédica con notables características tales como un excelente contraste en tejidos blandos y una muy alta resolución espacial. Sin embargo, a pesar de estas importantes propiedades, la IRM tiene algunos inconvenientes, como una baja sensibilidad y tiempos de adquisición muy largos. Esta tesis se centra en buscar soluciones para el segundo inconveniente mencionado a través del uso de metodologías de compressed sensing. Compressed sensing es una técnica novedosa que permite la reducción de los tiempos de adquisición y también la mejora de la resolución espacio-temporal y la calidad de las imágenes. La teoría de compressed sensing va más allá los límites tradicionales de la teoría de muestreo de Nyquist, permitiendo la reconstrucción de imágenes a partir de un número incompleto de muestras siempre que se cumpla que 1) las imágenes a reconstruir tengan una representación dispersa (sparse) en un determinado dominio, 2) el submuestreo aplicado sea aleatorio y 3) se usen algoritmos de reconstrucción no lineales específicos. La resonancia magnética cardiovascular tiene que superar muchas limitaciones derivadas de los ciclos respiratorios y cardiacos, y además tiene que cumplir unos requisitos de resolución espacio-temporal muy estrictos. De ahí que cualquier mejora que se pueda conseguir bien reduciendo tiempos de adquisición o bien aumentando la calidad de las imágenes resultaría altamente beneficiosa. Esta tesis tiene como objetivo investigar los beneficios que la técnica de compressed sensing puede proporcionar a dos aplicaciones punteras en RM cardiovascular, la adquisición de cines cardiacos de pequeño animal y la visualización de placas ateroscleróticas en arterias coronarias en humano. La adquisición de cines cardiacos en pequeño animal es una aplicación ampliamente usada para evaluar función cardiovascular. En esta tesis, proponemos una metodología de compressed sensing para reducir los tiempos de adquisición de secuencias de cine cardiaco denominadas self-gated. Desarrollamos esta metodología modificando el algoritmo de reconstrucción de Split-Bregman para incluir la minimización de la Variación Total a través de la dimensión temporal además de la espacial. Para ello, simulamos adquisiciones de compressed sensing submuestreando retrospectivamente adquisiciones completas. La calidad de los resultados se evaluó con medidas funcionales tanto en animales sanos como en animales a los que se les produjo un infarto cardiaco. El método propuesto mostró que factores de aceleración de 10-14 son posibles para animales sanos y en torno a 10 para animales infartados. Estos factores de aceleración teóricos se verificaron en la práctica mediante la implementación de una adquisición submuestreada en un escáner de IRM de pequeño animal de 7 T. Se demostró que aceleraciones en torno a 10 son factibles en la práctica, valor muy cercano a los obtenidos en las simulaciones previas. Sin embargo para factores de aceleración muy altos, se apreciaron algunas diferencias entre la calidad de las imágenes con submuestreo simulado y las realmente submuestreadas; esto puede ser debido a una mayor sensibilidad a la contaminación por movimiento durante la adquisición. La segunda aplicación cardiovascular explorada en esta tesis es la visualización de placas ateroscleróticas en arterias coronarias en humanos. Hoy en día, la visualización y clasificación in vivo de es te tipo de placas mediante IRM aún no es técnicamente posible. Pero no hay duda de que técnicas de aceleración, como compressed sensing, pueden contribuir enormemente a la consecución de la aplicación in vivo. Sin embargo, como paso previo a la evaluación de las técnicas de aceleración, es conveniente hacer un estudio sistemático de los requerimientos técnicos necesarios para la correcta visualización y caracterización de las placas coronarias. Mediante simulaciones establecimos los límites de señal a ruido, resolución espacial y movimiento requeridos para la correcta visualización de las placas y propusimos un nuevo esquema de adquisición híbrido que reduce la sensibilidad al movimiento. Para valorar los beneficios que las técnicas de aceleración pueden aportar, evaluamos diferentes algoritmos de imagen en paralelo e implementamos una metodología de compresed sensing que tiene en cuenta la información de los mapas de sensibilidad de las antenas utilizadas. En este estudio se encontró, que para la configuración de antenas analizadas, los beneficios de la aceleración están muy limitados por el pequeño campo de visón utilizado. Por tanto, para incrementar los beneficios que estas técnicas de aceleración pueden aportar la imagen de placas coronarias in vivo, es necesario diseñar antenas específicas para esta aplicación.application/pdfengAtribución-NoComercial-SinDerivadas 3.0 EspañaMedical image processingBiomedical imagingMagnetic resonance imagingMRICompressed sensingAdvanced acquisition and reconstruction techniques in magnetic resonance imagingdoctoral thesisElectrónicaMedicinaÓpticaopen access