Bakri, SihemFrangoudis, Pantelis A.Ksentini, Adlen2020-01-142020-01-142019-12https://hdl.handle.net/10016/29454This paper has been presented at: IEEE Global Communications Conference, GLOBECOM 2019Network slicing is one of the key components allow-ing to support the envisioned 5G services, which are organized in three different classes: Enhanced Mobile Broadband (eMBB), massive Machine Type Communication (mMTC), and Ultra-Reliable and Low-Latency Communication (URLLC). Network Slicing relies on the concept of Network Softwarization (Software Defined Networking - SDN and Network Functions Virtualization - NFV) to share a common infrastructure and build virtual instances (slices) of the network tailored to the needs of dif-ferent 5G services. Although it is straightforward to slice and isolate computing and network resources for Core Network (CN) elements, isolating and slicing Radio Access Network (RAN) resources is still challenging. In this paper, we leverage a two-level MAC scheduling architecture and provide a resource sharing algorithm to compute and dynamically adjust the necessary radio resources to be used by each deployed network slice, covering eMBB and URLLC slices. Simulation results clearly indicate the ability of our solution to slice the RAN resources and satisfy the heterogeneous requirements of both types of network slices.6eng© 2019 IEEE.5GNetwork slicingSchedulingRadio resources sharingDynamic slicing of RAN resources for heterogeneous coexisting 5G servicesconference proceedingsTelecomunicacionesopen access