RT Journal Article T1 Influence of elastomeric matrix and particle volume fraction on the mechanical response of magneto-active polymers A1 García González, Daniel A1 Moreno Pelayo, Miguel Ángel A1 Valencia Blanco, Leticia A1 Arias Hernández, Ángel A1 Velasco Bayón, Diego AB Magneto-active polymers (MAPs) are revolutionising the fields of material science and solid mechanics as well as having an important presence in the bioengineering community. These composites consist of a polymeric matrix (i.e., elastomer) filled with magnetic particles (i.e., iron particles). When bonded together, these two phases form a continuum solid that, under the application of an external magnetic field, mechanically reacts leading to changes in shape and volume or/and alterations in its rheological properties. Such a magneto-mechanical response is determined by the material properties of the polymeric matrix and magnetic particles. In this work, we present the mechanical characterisation of MAPs constituted by PDMS filled with carbonyl iron powder (CIP) particles. To this end, sixteen different combinations of elastomeric base/crosslinker mixing ratio (from 5:1 to 20:1) and particles' volume fraction (from 0% to 30%) are tested under tensile loading. These results are analysed and provide the bases for the formulation of a nonlinear constitutive model that accounts for these dependencies. The modelling approach is extended to incorporate magneto-mechanical effects. Finally, the complete model is used to provide theoretical guidance for magneto-active systems, highlighting potential applications in epithelial wound healing stimulation. PB Elsevier Ltd. SN 1359-8368 SN 1879-1069 (online) YR 2021 FD 2021-06-15 LK https://hdl.handle.net/10016/32926 UL https://hdl.handle.net/10016/32926 LA eng NO DGG, DV and MAM acknowledge support from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 947723,project: 4D-BIOMAP). The authors acknowledge support from Programa de Apoyo a la Realización de Proyectos Interdisciplinares deI+D para Jóvenes Investigadores de la Universidad Carlos III de Madrid and Comunidad de Madrid, Spain (project: BIOMASKIN). DGG acknowledges support from the Talent Attraction grant (CM 2018 -2018-T2/IND-9992) from the Comunidad de Madrid and MAM acknowledges support from the Ministerio de Ciencia, Innovacion y Universidades, Spain (FPU19/03874). DS e-Archivo RD 1 sept. 2024