RT Journal Article T1 Material selection for solar central receiver tubes A1 Laporte Azcué, Marta A1 González Gómez, Pedro Ángel A1 Rodríguez Sánchez, María de los Reyes A1 Santana Santana, Domingo José AB The severe operation conditions and great capital investment of solar power tower central receivers motivate the lifetime analysis of a molten-salt external-cylindrical-tubular receiver, considering five alloy alternatives for its tubes manufacturing: Haynes 230, alloy 316H, Inconel 625, 740H and 800H. An analytical low-computational cost methodology is employed, considering the temperature dependence of tube material properties, elastic-plastic stresses/strains and stress relaxation. Thus, creep and fatigue experimental data available in the literature for these alloys are compiled in this work, providing the coefficients required for the methodology followed.A great alloys operation limitation is the film temperature to avoid corrosion issues; the most permissive are H230, 740H and 800H (650 °C), followed by Inconel 625 (630 °C) and 316H (600 °C). This, and the twice the yield strength, is regarded to set the heliostat field aiming strategy as equatorial as possible for each alloy, resulting in great power production divergences: 24% and 65% less for 625 and alloy 316H receivers with respect to the 740H receiver. Then, the lifetime analysis for a clear design day operation, representative of the receiver during ideal operation, is performed. The stress relaxation regard becomes critical for the accurate damage prediction; alloys 316H and 800H show stress reset during operation, not benefitting from a global stress relaxation. Thus, 800H exhibits a poor endurance. For the clear-day assumption, 740H shows the best lifetime and costs/power performance; the levelized cost of alloy of H230, 625 and alloy 316H is 0.01, 0.09 and over 0.25, respectively, with respect to 740H. PB Elsevier SN 0927-0248 YR 2021 FD 2021-10 LK https://hdl.handle.net/10016/34141 UL https://hdl.handle.net/10016/34141 LA eng NO This research is partially funded by the scholarship "Ayudas para la formación del profesorado universitario" [grant number FPU-02361] awarded by the Spanish Ministerio de Educación, Cultura y Deporte (MECD), the Spanish government under the project RTI2018-096664-B-C21 (MICINN/FEDER, UE) and the call "Programa de apoyo a la realización de proyectos interdisciplinares de I+D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020", under the projects RETOrenovable-CM-UC3M [grant number 2020/00034/001] and ZEROGASPAIN-CM-UC3M [grant number 2020/00033/001], funded on the frame of the Convenio Plurianual Comunidad de Madrid- Universidad Carlos III de Madrid. DS e-Archivo RD 27 jul. 2024