RT Journal Article T1 vrAIn: Deep Learning based Orchestration for Computing and Radio Resources in vRANs A1 Ayala Romero, José A. A1 García Saavedra, Andrés A1 Gramaglia, Marco A1 Banchs Roca, Albert A1 Costa-Pérez, Xavier A1 Alcaraz, Juan J. AB The virtualization of radio access networks (vRAN) is the last milestone in the NFV revolution. However, the complexrelationship between computing and radio dynamics make vRAN resource control particularly daunting. We present vrAIn, a resourceorchestrator for vRANs based on deep reinforcement learning. First, we use an autoencoder to project high-dimensional context data(traffic and channel quality patterns) into a latent representation. Then, we use a deep deterministic policy gradient (DDPG) algorithmbased on an actor-critic neural network structure and a classifier to map contexts into resource control decisions.We have evaluated vrAIn experimentally, using an open-source LTE stack over different platforms, and via simulations over aproduction RAN. Our results show that: (i) vrAIn provides savings in computing capacity of up to 30% over CPU-agnostic methods;(ii) it improves the probability of meeting QoS targets by 25% over static policies; (iii) upon computing capacity under-provisioning,vrAIn improves throughput by 25% over state-of-the-art schemes; and (iv) it performs close to an optimal offline oracle. To ourknowledge, this is the first work that thoroughly studies the computational behavior of vRANs and the first approach to a model-freesolution that does not need to assume any particular platform or context. PB IEEE SN 1536-1233 YR 2022 FD 2022-07-01 LK https://hdl.handle.net/10016/31831 UL https://hdl.handle.net/10016/31831 LA eng NO This work was partially supported by the European Commission through Grant No. 856709 (5Growth) and Grant No. 856950 (5G-TOURS); by Science Foundation Ireland (SFI) through Grant No. 17/CDA/4760; and AEI/FEDER through project AIM under Grant No. TEC2016-76465-C2-1-R. Furthermore, the work is closely related to the EU project DAEMON (Grant No. 101017109). DS e-Archivo RD 16 sept. 2024