RT Conference Proceedings T1 Ti2AlC and Ti3SiC2 MAX phase foams: processing, porosity characterization and connection between processing parameters and porosity A1 Velasco Núñez, Beatriz A1 Hutsch, T. A1 Weißgärber, T. A1 Gordo Odériz, Elena A1 Tsipas, Sophia Alexandra AB MAX phases Ti2AlC and Ti3SiC2 foams with controlled porosity and pore size were produced using the space holder method. The foams were processed using water-leachable crystalline carbohydrate as space holder that involves: mixing, cold isostatic pressing, dissolution and sintering. Three combinations of volume percentage (20%-60%) and size distribution (250-1000 mum) of space holder were introduced during mixing. The foams were characterized and compared with the material without space holder. The characterization included: morphology (overall, open and closed porosity by Archimedes method) and gas permeability. Foams with porosity up to about 60 vol% and pore size distribution ranging from about 250 to 1000 mum were produced. Experimental porosity was compared to the theoretical expected porosity. The results show a bimodal porosity that can be customized by the sintering and the space holder. This study connects the processing parameters to the porosity created and allows control of porosity and pore size to produce tailor-made properties. PB European Powder Metallurgy Association (EPMA) SN 978-1-899072-48-4 YR 2016 FD 2016 LK https://hdl.handle.net/10016/29173 UL https://hdl.handle.net/10016/29173 LA eng NO Proceeding of: World PM2016 Congress Proceedings. New materials and applications, biomedical applications NO The authors would like to thank the funding provided for this research by the Regional Government of Madrid- Dir. Gral. Universidades e Investigación, through the project S2013/MIT-2862 (MULTIMAT-CHALLENGE-CM), and by Spanish Government through Ramón y Cajal contract RYC-2014-15014 and the project MAT2012/38650-C02-01 DS e-Archivo RD 18 jul. 2024