RT Conference Proceedings T1 Balance computation of objects transported on a tray by ahumanoid robot based on 3D dynamic slopes A1 García Haro, Juan Miguel A1 Martínez de la Casa Díaz, Santiago A1 Balaguer Bernaldo de Quirós, Carlos AB Humanoid robots are designed to perform tasks in the same way than humans do. One of these tasks is to act as a waiter serving drinks, food, etc. Transporting all these items can be considered a manipulation task. In this application, the objects are transported over a tray, without grasping them. The consequence is that the objects are not firmly attached to the robot, which is the case in grasping. Then, the complexity of robotics grasping is avoided but stability issues arise. The problem of keeping balance of the object transported by a robot over a tray is discussed in this paper. The approach presented is based on the computation of the Zero Moment Point (ZMP) of the object, which is modelled as a three dimensional Linear Inverted Pendulum Model (3D-LIPM). The use of force-torque sensors located at the wrist enables ZMP computation, but the main problem to be solved is how the robot should react when the object losses balance. One strategy is to rotate the tray to counteract the rotation of the object. This rotation has to be proportional to the ZMP variation and the object's rotation angle. This issue is solved by applying the concept of three dimensional dynamic slopes. It helps to avoid kinematic problems and make balance computation independent from the angle of the tray. PB IEEE SN 978-1-5386-7283-9 YR 2019 FD 2019-01-01 LK https://hdl.handle.net/10016/30389 UL https://hdl.handle.net/10016/30389 LA eng NO This paper has been presented at the 18th IEEE-RAS International Conference on Humanoid Robots (Humanoids). NO The research leading to these results has received funding from the ROBOHEALTH-A project (DPI2013-47944-C4-1-R) funded by Spanish Ministry of Economy and Competitiveness, from the RoboCity2030-II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU and from the HUMASOFT project, with reference DPI2016-75330-P, funded by the Spanish Ministry of Economy and Competitiveness. DS e-Archivo RD 18 may. 2024