RT Journal Article T1 Analysis and implementation of the autotransformer forward-flyback converter applied to photovoltaic systems A1 López del Moral Hernández, David A1 Barrado Bautista, Andrés A1 Sanz García, Clara Marina A1 Lázaro Blanco, Antonio A1 Fernández Herrero, Cristina A1 Zumel Vaquero, Pablo AB The Distributed Maximum Power Point Tracking (DMPPT) architecture is employed to overcome the mismatching phenomena in grid-tied photovoltaic (PV) installations. In this kind of architecture, a DC-DC module integrated converter (MIC) manages each PV panel. Thanks to the DC-DC converters, the differences between PV panels do not influence others, maximizing the amount of harvested power. The MIC requirements to make this kind of solutions profitable are voltage step-down and step-up capability, low cost and high efficiency. This paper analyses the Autotransformer Forward-Flyback (AFF) converter. This converter is considered as a MIC candidate for fulfilling the requirements above. The study of the AFF converter includes the steady-state analysis and the small signal analysis in continuous conduction mode. The advantages of the AFF converter are the capability of voltage step-down and step-up; the simplicity since it only includes a single controlled switch; the use of an autotransformer; good dynamic performances and the soft switching characteristics in all the diodes. The paper includes a detailed AFF converter step-by-step design procedure, applied to 100 kW grid-tied PV installation, in which the effect of shadows has been considered. A 225 W AFF converter prototype validates the theoretical analyses, achieving an efficiency up to 94.5%. PB Elsevier Ltd. SN 0038-092X SN 1471-1257 (online) YR 2019 FD 2019-12 LK https://hdl.handle.net/10016/35573 UL https://hdl.handle.net/10016/35573 LA eng NO This work has been supported by the Ministry of Economy and Competitiveness and FEDER funds through the research project "Storage and Energy Management for Hybrid Electric Vehicles based on Fuel Cell, Battery and Supercapacitors" - ELECTRICAR-AG- (DPI2014-53685-C2-1-R) DS e-Archivo RD 18 jul. 2024