RT Journal Article T1 A procedure to predict solar receiver damage during transient conditions A1 Laporte Azcué, Marta A1 González Gómez, Pedro Ángel A1 Rodríguez Sánchez, María de los Reyes A1 Santana Santana, Domingo José AB The successful deployment of solar-power-towers lies in the reliable design of solar receivers, assuring the lifetime under high heat flux and cloud passages. Two main damage mechanisms appear during central-receiver operation: creep, during hold times at high temperatures and stresses, and fatigue, caused by transient operation. This work aims to determine the extent of each damage on a Haynes 230 receiver. It is analyzed using transient DNI of a whole year, controlling the operation to guarantee the receiver preheat and minimize the start-ups. The molten-salt flow-rate during cloud passages or hazy days remains as the clear-sky scheduled one, to avoid tube overheat, preventing salt degradation and stress reset, when the clouds cleared.The results show that creep dominates, with a minimum share of 73.8% for the transient case. High creep is motivated by the long operating (6 h per day on average), mostly at high DNI, while the low number of average start-ups per day (1.4) do not increase much the fatigue, barely affected by small transients. The use of clear-sky, instead of the transient DNI, constitutes a conservative estimation, with the creep greatly increasing, showing a minimum share of 82%. Consequently, the predicted lifetime is lower, going from 45 years to 27.8. Intermediate mass-flow control modes fall in-between them. Clustering the days according to their DNI features shows that the high-energy days, with high creep, are the most common, highlighting the creep interest and that the fatigue can be estimated taking only the strain range produced by the start-up. PB Elsevier SN 1364-0321 YR 2022 FD 2022-02 LK https://hdl.handle.net/10016/34137 UL https://hdl.handle.net/10016/34137 LA eng NO This research is partially funded by the scholarship "Ayudas para la formación del profesorado universitario" (FPU-02361) awarded by the Spanish Ministerio de Educación, Cultura y Deporte (MECD), the Spanish government under the project RTI2018-096664-B-C21 (MICINN/FEDER, UE) and the call "Programa de apoyo a la realización de proyectos interdisciplinares de I + D para jóvenes investigadores de la Universidad Carlos III de Madrid 2019-2020", under the projects RETOrenovable-CM-UC3M and ZEROGASPAIN-CM-UC3M, funded on the frame of the Convenio Plurianual Comunidad de Madrid- Universidad Carlos III de Madrid. DS e-Archivo RD 27 jul. 2024