RT Conference Proceedings T1 An NFV system to support service provisioning on UAV networks A1 Nogales Dorado, Borja A1 Vidal Fernández, Iván A1 Sánchez Agüero, Víctor A1 Valera Pintor, Francisco A1 González Blázquez, Luis Félix AB In this presentation, we will first describe the design and implementation of an NFV system capable of deploying moderately complex network services over a wireless ad-hoc network of resource-constrained compute nodes. The system design targets aerial networks built by Unmanned Aerial Vehicles (UAVs), and it relies on container virtualization to support the execution of network functions within constrained environments, as well as on mobile ad-hoc networking to support the underlying end-to-end network communications [1]. The presentation will also cover the implementation experience from developing this NFV system, which is based on relevant and widely-adopted open-source technologies in the NFV arena such as ETSI Open-Source MANO (OSM) and OpenStack.In addition, we will present the details concerning the integration of this system into a distributed NFV testbed spanning three different remote sites in Spain, i.e., Universidad Carlos III de Madrid (UC3M), Universidad Politécnica de Cataluña (UPC), and Universidad del País Vasco (UPV-EHU). The goal of this testbed is to explore synergies among NFV, UAVs, and 5G vertical services, following a practical approach primarily governed by experimentation. To showcase the potential of this testbed to support vertical services, we will present three different use cases that have been realized as part of our prior research work: i) the automated deployment of an IP telephony service on a delimited geographic area, using a network of interconnected UAVs [2] (noteworthily, this work was awarded by ETSI as the best proof-of-concept demonstration with OSM during the OSM Release Eight cycle [3]); ii) the realization of a smart farming vertical service [4]; and iii) a public-safety vertical use case, which uses aerial and vehicular NFV infrastructures to monitor traffic conditions and handle emergency situations [5].This latter involves an international collaboration with the Instituto de Telecomunicações of Aveiro, which operates a vehicular NFV infrastructure. Finally, the presentation will tackle the standardization challenges related with the future view of a decentralized and flexible MANO framework, capable of supporting the operation of cost-effective, reliable services beyond the edge of the telecommunication operator infrastructures. In this view, multiple stakeholders would collaboratively provide a wide range of heterogeneous compute-connect devices (e.g., end-user terminals, CPEs, or UAV swarms).These devices might exist and be opportunistically used, or they could otherwise be deployed on-demand by thosestakeholders, contributing to the availability of a potentially unlimited pool of network, computing, and storage resources beyond the network edge. This view introduces several standardization challenges to the NFV MANO framework in terms of interoperation, flexibility, robustness, and security. These challenges have been presented at the NFV Evolution1 event organized by ETSI, and will build the basis of our future work in this research line. PB Universidad de La Coruña SN 978-84-09-35131-2 YR 2021 FD 2021-10-27 LK https://hdl.handle.net/10016/35623 UL https://hdl.handle.net/10016/35623 LA eng NO This work has been partially supported by the European H2020 LABYRINTH project (grant agreement H2020-MG-2019-TwoStages-861696), and by the TRUE5G project (PID2019-108713RB-C52PID2019-108713RBC52/AEI/10.13039/501100011033) funded by the Spanish National Research Agency. DS e-Archivo RD 30 jun. 2024