RT Conference Proceedings T1 Finite-Blocklength Approximations for Noncoherent Rayleigh Block-Fading Channels A1 Lancho Serrano, Alejandro A1 Östman, Johan A1 Koch, Tobias Mirco A1 Vázquez Vilar, Gonzalo AB Several emerging wireless communication services and applications have stringent latency requirements, necessitating the transmission of short packets. To obtain performance benchmarks for short-packet wireless communications, it is crucial to study the maximum coding rate as a function of the blocklength, commonly called finite-blocklength analysis. A finiteblocklength analysis can be performed via nonasymptotic bounds or via refined asymptotic approximations. This paper reviews finite-blocklength approximations for the noncoherent Rayleigh block-fading channel. These approximations have negligible computational cost compared to the nonasymptotic bounds and are shown to be accurate for error probabilities as small as 10-8 [super index] and SNRs down to 0 dB. PB IEEE SN 978-1-7281-4300-2 YR 2020 FD 2020-03-30 LK https://hdl.handle.net/10016/30733 UL https://hdl.handle.net/10016/30733 LA eng NO Proceeding of: 53rd Asilomar Conference on Signals, Systems, and Computers (ACSSC 2019), 3-6 Nov. 2019, Pacific Grove, CA, USA NO A. Lancho has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 714161) and from the Swedish Research Council under grant 2016-03293. J. O¨ stman has been supported by the Swedish Research Council under grants 2014-6066 and 2016-03293. T. Koch has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grantagreement number 714161) and from the Spanish Ministerio de Economía y Competitividad under grants RYC-2014-16332 and TEC2016-78434-C3-3-R(AEI/FEDER, EU). G. Vazquez-Vilar has received funding from the EuropeanResearch Council (ERC) under the European Union’s Horizon 2020 researchand innovation programme (grant agreement number 714161) and from theSpanish Ministerio de Economía y Competitividad under grant TEC2016-78434-C3-3-R (AEI/FEDER, EU). DS e-Archivo RD 1 jul. 2024