RT Journal Article T1 New molecular settings to support in vivo anti-malarial assays A1 Bahamontes Rosa, Noemí A1 Rodríguez Alejandre, Ane A1 Gómez, Vanesa A1 Viera, Sara A1 Gómez Lorenzo, María G. A1 Sanz Alonso, Laura María A1 Mendoza Losana, Alfonso AB BackgroundQuantitative real-time PCR (qPCR) is now commonly used as a method to confirm diagnosis of malaria and to differentiate recrudescence from re-infection, especially in clinical trials and in reference laboratories where precise quantification is critical. Although anti-malarial drug discovery is based on in vivo murine efficacy models, use of molecular analysis has been limited. The aim of this study was to develop qPCR as a valid methodology to support pre-clinical anti-malarial models by using filter papers to maintain material for qPCR and to compare this with traditional methods.MethodsFTA technology (Whatman) is a rapid and safe method for extracting nucleic acids from blood. Peripheral blood samples from mice infected with Plasmodium berghei, P. yoelii, or P. falciparum were kept as frozen samples or as spots on FTA cards. The extracted genetic material from both types of samples was assessed for quantification by qPCR using sets of specific primers specifically designed for Plasmodium 18S rRNA, LDH, and CytB genes.ResultsThe optimal conditions for nucleic acid extraction from FTA cards and qPCR amplification were set up, and were confirmed to be suitable for parasite quantification using DNA as template after storage at room temperature for as long as 26 months in the case of P. berghei samples and 52 months for P. falciparum and P. yoelii. The quality of DNA extracted from the FTA cards for gene sequencing and microsatellite amplification was also assessed.ConclusionsThis is the first study to report the suitability of FTA cards and qPCR assay to quantify parasite load in samples from in vivo efficacy models to support the drug discovery process. PB Springer SN 1475-2875 YR 2016 FD 2016-03-08 LK https://hdl.handle.net/10016/38871 UL https://hdl.handle.net/10016/38871 LA eng DS e-Archivo RD 17 jul. 2024