RT Journal Article T1 Radiation-induced resistance oscillations in 2D electron systems with strong Rashba coupling A1 Iñarrea Las Heras, Jesús AB We present a theoretical study on the effect of radiation on the mangetoresistance of two-dimensional electron systems with strong Rashba spint-orbit coupling. We want to study the interplay between two well-known effects in these electron systems: the radiation-induced resistance oscillations and the typical beating pattern of systems with intense Rashba interaction. We analytically derive an exact solution for the electron wave function corresponding to a total Hamiltonian with Rashba and radiation terms. We consider a perturbation treatment for elastic scattering due to charged impurities to finally obtain the magnetoresistance of the system. Without radiation we recover a beating pattern in the amplitude of the Shubnikov de Hass oscillations: a set of nodes and antinodes in the magnetoresistance. In the presence of radiation this beating pattern is strongly modified following the profile of radiation-induced magnetoresistance oscillations. We study their dependence on intensity and frequency of radiation, including the teraherzt regime. The obtained results could be of interest for magnetotransport of nonideal Dirac fermions in 3D topological insulators subjected to radiation. PB Nature Research SN 2045-2322 YR 2017 FD 2017-10-19 LK https://hdl.handle.net/10016/31683 UL https://hdl.handle.net/10016/31683 LA eng DS e-Archivo RD 27 jul. 2024