RT Journal Article T1 Metasurface-based wideband MIMO antenna for 5G millimeter-wave systems A1 Sehrai, Daniyal Ali A1 Asif, Muhammad A1 Shah, Wahab Ali A1 Khan, Jalal A1 Ullah, Ibrar A1 Ibrar, Muhammad A1 Jan, Saeedullah A1 Alibakhshikenari, Mohammad A1 Falcone, Francisco A1 Limiti, Ernesto AB This paper presents a metasurface based multiple-input multiple-output (MIMO) antenna with a wideband operation for millimeter-wave 5G communication systems. The antenna system consists of four elements placed with a 90 degree shift in order to achieve a compact MIMO system while a 2×2 non-uniform metasurface (total four elements) is placed at the back of the MIMO configuration to improve the radiation characteristics of it. The overall size of the MIMO antenna is 24×24 mm 2 while the operational bandwidth of the proposed antenna system ranges from 23.5-29.4 GHz. The peak gain achieved by the proposed MIMO antenna is almost 7dB which is further improved up to 10.44 dB by employing a 2×2 metasurface. The total efficiency is also observed more than 80% across the operating band. Apart from this, the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG), and channel capacity loss (CCL) are analyzed which demonstrate good characteristics. All the simulations of the proposed design are carried out in computer simulation technology (CST) software, and measured results reveal good agreement with the simulated one which make it a potential contender for the upcoming 5G communication systems. PB IEEE SN 2169-3536 YR 2021 FD 2021-09-07 LK https://hdl.handle.net/10016/33532 UL https://hdl.handle.net/10016/33532 LA eng NO This work was supported in part by the Universidad Carlos III de Madrid and the European Union's Horizon 2020 research and innovationprogramme under the Marie Sklodowska-Curie grant Agreement No 801538, and in part by the the Ministerio de Ciencia, Innovación y Universidades, Gobierno de España (MCIU/AEI/FEDER,UE) under Grant RTI2018-095499-B-C31. DS e-Archivo RD 1 sept. 2024