RT Journal Article T1 On Single-Antenna Rayleigh Block-Fading Channels at Finite Blocklength A1 Lancho Serrano, Alejandro A1 Koch, Tobias Mirco A1 Durisi, Giuseppe AB This article concerns the maximum coding rate at which data can be transmitted over a noncoherent, single-antenna, Rayleigh block-fading channel using an error-correcting code of a given blocklength with a block-error probability not exceeding a given value. A high-SNR normal approximation of the maximum coding rate is presented that becomes accurate as the signal-to-noise ratio (SNR) and the number of coherence intervals $L$ over which we code tend to infinity. Numerical analyses suggest that the approximation is accurate at SNR values above 15dB and when the number of coherence intervals is 10 or more. PB IEEE SN 0018-9448 SN 1557-9654 (online) YR 2020 FD 2020-01 LK https://hdl.handle.net/10016/29598 UL https://hdl.handle.net/10016/29598 LA eng NO The work of A. Lancho and T. Koch was supported in part by the Spanish Ministerio de Economia y Competitividad under Grant TEC2013-41718-R and Grant TEC2016-78434-C3-3-R (AEI/FEDER, EU), in part by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under Grant 714161, and in part by the Comunidad de Madrid under Grant S2103/ICE-2845. The work of A. Lancho further was supported by an FPU fellowship from the Spanish Ministerio de Educación, Cultura y Deporte under Grant FPU14/01274. The work of T. Koch further was supported in part by the Spanish Ministerio de Economía y Competitividad under Grant RYC-2014-16332 and in part by the 7th European Union Framework Programme under Grant 333680. The work of G. Durisi was supported by the Swedish Research Council under Grant 2012-4571 and Grant 2016-03293. DS e-Archivo RD 1 sept. 2024