dc.contributor.author | Baíllo, Amparo |
dc.contributor.author | Grané, Aurea |
dc.contributor.editor | Universidad Carlos III de Madrid. Departamento de Estadística |
dc.date.accessioned | 2007-09-10T11:46:10Z |
dc.date.available | 2007-09-10T11:46:10Z |
dc.date.issued | 2007-08 |
dc.identifier.uri | http://hdl.handle.net/10016/938 |
dc.description.abstract | The aim of this work is to introduce a new nonparametric regression technique in the context of functional covariate and scalar response. We propose a local linear regression estimator and study its asymptotic behaviour. Its finite-sample performance is compared with a Nadayara-Watson type kernel regression estimator via a Monte Carlo study and the analysis of two real data sets. In all the scenarios considered, the local linear regression estimator performs better than the kernel one, in the sense that the mean squared prediction error and its standard deviation are lower. |
dc.format.extent | 431418 bytes |
dc.format.mimetype | application/pdf |
dc.language.iso | eng |
dc.relation.ispartofseries | UC3M Working papers. Statistics and Econometrics |
dc.relation.ispartofseries | 07-15 |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Functional data |
dc.subject.other | Nonparametric smoothing |
dc.subject.other | Local linear regression |
dc.subject.other | Kernel regression |
dc.subject.other | Fourier expansion |
dc.subject.other | Cross-validation |
dc.title | Local linear regression for functional predictor and scalar response |
dc.type | workingPaper |
dc.subject.eciencia | Estadística |
dc.rights.accessRights | openAccess |
dc.identifier.repec | ws076115 |
dc.affiliation.dpto | UC3M. Departamento de Estadística |
The following license files are associated with this item: