dc.contributor.author | Molina, Isabel |
dc.contributor.author | Salvati, Nicola |
dc.contributor.author | Pratesi, Monica |
dc.contributor.editor | Universidad Carlos III de Madrid. Departamento de Estadística |
dc.date.accessioned | 2007-04-23T15:56:32Z |
dc.date.available | 2007-04-23T15:56:32Z |
dc.date.issued | 2007-04 |
dc.identifier.uri | http://hdl.handle.net/10016/707 |
dc.description.abstract | This work assumes that the small area quantities of interest follow a Fay-Herriot model with spatially correlated random area effects. Under this model, parametric and nonparametric bootstrap procedures are proposed for estimating the mean squared error of the EBLUP (Empirical Best Linear Unbiased Predictor). A simulation study compares the bootstrap estimates with an asymptotic analytical approximation and studies the robustness to non-normality. Finally, two applications with real data are described. |
dc.format.extent | 619319 bytes |
dc.format.mimetype | application/pdf |
dc.language.iso | eng |
dc.language.iso | eng |
dc.relation.ispartofseries | UC3M Working papers. Statistics and Econometrics |
dc.relation.ispartofseries | 07-08 |
dc.rights | Atribución-NoComercial-SinDerivadas 3.0 España |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject.other | Spatial correlation |
dc.subject.other | Simultaneously autoregressive process |
dc.subject.other | Parametric bootstrap |
dc.subject.other | Nonparametric bootstrap |
dc.title | Bootstrap for estimating the mean squared error of the spatial EBLUP |
dc.type | workingPaper |
dc.subject.eciencia | Estadística |
dc.rights.accessRights | openAccess |
dc.identifier.repec | ws073408 |
The following license files are associated with this item: